論文の概要: A Survey and Perspective on Artificial Intelligence for Security-Aware
Electronic Design Automation
- arxiv url: http://arxiv.org/abs/2204.09579v2
- Date: Thu, 21 Apr 2022 03:01:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-23 06:57:45.181135
- Title: A Survey and Perspective on Artificial Intelligence for Security-Aware
Electronic Design Automation
- Title(参考訳): セキュリティアウェア電子設計自動化のための人工知能に関する調査と展望
- Authors: David Selasi Koblah, Rabin Yu Acharya, Daniel Capecci, Olivia P.
Dizon-Paradis, Shahin Tajik, Fatemeh Ganji, Damon L. Woodard, Domenic Forte
- Abstract要約: 我々は、回路設計/最適化、セキュリティとエンジニアリングの課題、セキュリティを意識したCAD/EDAの研究、今後の研究方向性について、AL/MLの現状を要約する。
- 参考スコア(独自算出の注目度): 6.496603310407321
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) and machine learning (ML) techniques have been
increasingly used in several fields to improve performance and the level of
automation. In recent years, this use has exponentially increased due to the
advancement of high-performance computing and the ever increasing size of data.
One of such fields is that of hardware design; specifically the design of
digital and analog integrated circuits~(ICs), where AI/ ML techniques have been
extensively used to address ever-increasing design complexity, aggressive
time-to-market, and the growing number of ubiquitous interconnected devices
(IoT). However, the security concerns and issues related to IC design have been
highly overlooked. In this paper, we summarize the state-of-the-art in AL/ML
for circuit design/optimization, security and engineering challenges, research
in security-aware CAD/EDA, and future research directions and needs for using
AI/ML for security-aware circuit design.
- Abstract(参考訳): 人工知能(AI)と機械学習(ML)の技術は、パフォーマンスと自動化のレベルを改善するために、いくつかの分野でますます使われている。
近年、高性能コンピューティングの進歩とデータサイズの増加により、この利用は指数関数的に増加している。
このような分野の1つはハードウェア設計であり、特にデジタルおよびアナログ集積回路(IC)の設計であり、そこではAI/ML技術が、常に増加する設計の複雑さ、アグレッシブな市場投入時間、そしてユビキタス接続デバイス(IoT)の増加に対応するために広く使われている。
しかし、IC設計に関するセキュリティ上の懸念や問題は非常に見過ごされている。
本稿では,回路設計・最適化におけるAL/MLの現状と課題,セキュリティ対応CAD/EDAの研究,セキュリティ対応回路設計におけるAI/MLの今後の研究方向性とニーズについて要約する。
関連論文リスト
- Using the Abstract Computer Architecture Description Language to Model
AI Hardware Accelerators [77.89070422157178]
AI統合製品の製造者は、製品のパフォーマンス要件に適合するアクセラレータを選択するという、重大な課題に直面します。
抽象コンピュータアーキテクチャ記述言語(ACADL)は、コンピュータアーキテクチャブロック図の簡潔な形式化である。
本稿では,AIハードウェアアクセラレーションのモデル化にACADLを用いること,DNNのマッピングにACADL記述を使用し,タイミングシミュレーションのセマンティクスを解説し,性能評価結果の収集を行う。
論文 参考訳(メタデータ) (2024-01-30T19:27:16Z) - LLM4EDA: Emerging Progress in Large Language Models for Electronic
Design Automation [74.7163199054881]
大規模言語モデル(LLM)は、文脈理解、論理推論、回答生成においてその能力を実証している。
本稿では,EDA分野におけるLLMの応用に関する系統的研究を行う。
論理合成,物理設計,マルチモーダル特徴抽出,回路のアライメントにLLMを適用することに焦点を当て,今後の研究の方向性を強調した。
論文 参考訳(メタデータ) (2023-12-28T15:09:14Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
ハードウェア・ソフトウェア共同設計型, ランダム抵抗型メモリベース深部極点学習マシン(DEPLM)を提案する。
我々の共同設計システムは,従来のシステムと比較して,エネルギー効率の大幅な向上とトレーニングコストの削減を実現している。
論文 参考訳(メタデータ) (2023-12-14T09:46:16Z) - Design Automation for Fast, Lightweight, and Effective Deep Learning
Models: A Survey [53.258091735278875]
本調査では,エッジコンピューティングを対象としたディープラーニングモデルの設計自動化技術について述べる。
これは、有効性、軽量性、計算コストの観点からモデルの習熟度を定量化するために一般的に使用される主要なメトリクスの概要と比較を提供する。
この調査は、ディープモデル設計自動化技術の最先端の3つのカテゴリをカバーしている。
論文 参考訳(メタデータ) (2022-08-22T12:12:43Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - AI/ML Algorithms and Applications in VLSI Design and Technology [3.1171750528972204]
本稿では、VLSIの設計・製造において過去に導入されたAI/ML自動化アプローチについて概説する。
将来、VLSI設計の分野に革命をもたらすため、様々な抽象化レベルでAI/MLアプリケーションの範囲について論じる。
論文 参考訳(メタデータ) (2022-02-21T07:01:27Z) - Analog/Mixed-Signal Circuit Synthesis Enabled by the Advancements of
Circuit Architectures and Machine Learning Algorithms [0.0]
我々は、ニューラルネットワークに基づくサロゲートモデルを用いて、回路設計パラメータの探索とレイアウトの反復を高速化する。
最後に、AMS回路のいくつかの例を、仕様からシリコンプロトタイプまで迅速に合成し、人間の介入を大幅に削減する。
論文 参考訳(メタデータ) (2021-12-15T01:47:08Z) - Enabling Design Methodologies and Future Trends forEdge AI:
Specialization and Co-design [37.54971466190214]
エッジAI開発スタック全体にまたがる、最新の可能な設計方法論に関する包括的な調査を提供する。
効率的なエッジAI開発のための重要な手法は、単層特殊化とクロス層共同設計である。
論文 参考訳(メタデータ) (2021-03-25T16:29:55Z) - The Why, What and How of Artificial General Intelligence Chip
Development [0.0]
インテリジェントなセンシング、自動化、エッジコンピューティングアプリケーションは、AIチップの市場ドライバとなっている。
AIチップソリューションの一般化、パフォーマンス、堅牢性、スケーラビリティは、人間のような知能能力と比較される。
論文 参考訳(メタデータ) (2020-12-08T02:36:04Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。