A Survey on Bias and Fairness in Natural Language Processing
- URL: http://arxiv.org/abs/2204.09591v1
- Date: Sun, 6 Mar 2022 18:12:30 GMT
- Title: A Survey on Bias and Fairness in Natural Language Processing
- Authors: Rajas Bansal
- Abstract summary: We analyze the origins of biases, the definitions of fairness, and how different subfields of NLP bias can be mitigated.
We discuss how future studies can work towards eradicating pernicious biases from NLP algorithms.
- Score: 1.713291434132985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As NLP models become more integrated with the everyday lives of people, it
becomes important to examine the social effect that the usage of these systems
has. While these models understand language and have increased accuracy on
difficult downstream tasks, there is evidence that these models amplify gender,
racial and cultural stereotypes and lead to a vicious cycle in many settings.
In this survey, we analyze the origins of biases, the definitions of fairness,
and how different subfields of NLP mitigate bias. We finally discuss how future
studies can work towards eradicating pernicious biases from NLP algorithms.
Related papers
- Spoken Stereoset: On Evaluating Social Bias Toward Speaker in Speech Large Language Models [50.40276881893513]
This study introduces Spoken Stereoset, a dataset specifically designed to evaluate social biases in Speech Large Language Models (SLLMs)
By examining how different models respond to speech from diverse demographic groups, we aim to identify these biases.
The findings indicate that while most models show minimal bias, some still exhibit slightly stereotypical or anti-stereotypical tendencies.
arXiv Detail & Related papers (2024-08-14T16:55:06Z) - The Devil is in the Neurons: Interpreting and Mitigating Social Biases in Pre-trained Language Models [78.69526166193236]
Pre-trained Language models (PLMs) have been acknowledged to contain harmful information, such as social biases.
We propose sc Social Bias Neurons to accurately pinpoint units (i.e., neurons) in a language model that can be attributed to undesirable behavior, such as social bias.
As measured by prior metrics from StereoSet, our model achieves a higher degree of fairness while maintaining language modeling ability with low cost.
arXiv Detail & Related papers (2024-06-14T15:41:06Z) - Locating and Mitigating Gender Bias in Large Language Models [40.78150878350479]
Large language models (LLM) are pre-trained on extensive corpora to learn facts and human cognition which contain human preferences.
This process can inadvertently lead to these models acquiring biases and prevalent stereotypes in society.
We propose the LSDM (Least Square Debias Method), a knowledge-editing based method for mitigating gender bias in occupational pronouns.
arXiv Detail & Related papers (2024-03-21T13:57:43Z) - From Prejudice to Parity: A New Approach to Debiasing Large Language Model Word Embeddings [2.9324535682810886]
DeepSoftDebias is an algorithm that uses a neural network to perform'soft debiasing'
We exhaustively evaluate this algorithm across a variety of SOTA datasets, accuracy metrics, and challenging NLP tasks.
We find that DeepSoftDebias outperforms the current state-of-the-art methods at reducing bias across gender, race, and religion.
arXiv Detail & Related papers (2024-02-18T08:53:41Z) - On Bias and Fairness in NLP: Investigating the Impact of Bias and Debiasing in Language Models on the Fairness of Toxicity Detection [7.297345802761503]
representation bias, selection bias and overamplification bias are investigated.
We show that overamplification bias is the most impactful type of bias on the fairness of the task of toxicity detection.
We introduce a list of guidelines to ensure the fairness of the task of toxicity detection.
arXiv Detail & Related papers (2023-05-22T08:44:00Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
Modern NLP systems exhibit a range of biases, which a growing literature on model debiasing attempts to correct.
This paper seeks to clarify the current situation and plot a course for meaningful progress in fair learning.
arXiv Detail & Related papers (2023-02-11T14:54:00Z) - A Survey of Methods for Addressing Class Imbalance in Deep-Learning
Based Natural Language Processing [68.37496795076203]
We provide guidance for NLP researchers and practitioners dealing with imbalanced data.
We first discuss various types of controlled and real-world class imbalance.
We organize the methods by whether they are based on sampling, data augmentation, choice of loss function, staged learning, or model design.
arXiv Detail & Related papers (2022-10-10T13:26:40Z) - Toward Understanding Bias Correlations for Mitigation in NLP [34.956581421295]
This work aims to provide a first systematic study toward understanding bias correlations in mitigation.
We examine bias mitigation in two common NLP tasks -- toxicity detection and word embeddings.
Our findings suggest that biases are correlated and present scenarios in which independent debiasing approaches may be insufficient.
arXiv Detail & Related papers (2022-05-24T22:48:47Z) - Towards an Enhanced Understanding of Bias in Pre-trained Neural Language
Models: A Survey with Special Emphasis on Affective Bias [2.6304695993930594]
We present a survey to comprehend bias in large pre-trained language models, analyze the stages at which they occur, and various ways in which these biases could be quantified and mitigated.
Considering wide applicability of textual affective computing based downstream tasks in real-world systems such as business, healthcare, education, etc., we give a special emphasis on investigating bias in the context of affect (emotion) i.e., Affective Bias.
We present a summary of various bias evaluation corpora that help to aid future research and discuss challenges in the research on bias in pre-trained language models.
arXiv Detail & Related papers (2022-04-21T18:51:19Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
Bias in natural language processing arises from models learning characteristics of the author such as gender and race.
Existing methods for mitigating and measuring bias do not directly account for correlations between author demographics and linguistic variables.
This paper introduces a very simple but highly effective method for countering bias using instance reweighting.
arXiv Detail & Related papers (2021-09-16T23:40:28Z) - Towards Understanding and Mitigating Social Biases in Language Models [107.82654101403264]
Large-scale pretrained language models (LMs) can be potentially dangerous in manifesting undesirable representational biases.
We propose steps towards mitigating social biases during text generation.
Our empirical results and human evaluation demonstrate effectiveness in mitigating bias while retaining crucial contextual information.
arXiv Detail & Related papers (2021-06-24T17:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.