On Bias and Fairness in NLP: Investigating the Impact of Bias and Debiasing in Language Models on the Fairness of Toxicity Detection
- URL: http://arxiv.org/abs/2305.12829v3
- Date: Fri, 26 Apr 2024 08:50:12 GMT
- Title: On Bias and Fairness in NLP: Investigating the Impact of Bias and Debiasing in Language Models on the Fairness of Toxicity Detection
- Authors: Fatma Elsafoury, Stamos Katsigiannis,
- Abstract summary: representation bias, selection bias and overamplification bias are investigated.
We show that overamplification bias is the most impactful type of bias on the fairness of the task of toxicity detection.
We introduce a list of guidelines to ensure the fairness of the task of toxicity detection.
- Score: 7.297345802761503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language models are the new state-of-the-art natural language processing (NLP) models and they are being increasingly used in many NLP tasks. Even though there is evidence that language models are biased, the impact of that bias on the fairness of downstream NLP tasks is still understudied. Furthermore, despite that numerous debiasing methods have been proposed in the literature, the impact of bias removal methods on the fairness of NLP tasks is also understudied. In this work, we investigate three different sources of bias in NLP models, i.e. representation bias, selection bias and overamplification bias, and examine how they impact the fairness of the downstream task of toxicity detection. Moreover, we investigate the impact of removing these biases using different bias removal techniques on the fairness of toxicity detection. Results show strong evidence that downstream sources of bias, especially overamplification bias, are the most impactful types of bias on the fairness of the task of toxicity detection. We also found strong evidence that removing overamplification bias by fine-tuning the language models on a dataset with balanced contextual representations and ratios of positive examples between different identity groups can improve the fairness of the task of toxicity detection. Finally, we build on our findings and introduce a list of guidelines to ensure the fairness of the task of toxicity detection.
Related papers
- The African Woman is Rhythmic and Soulful: An Investigation of Implicit Biases in LLM Open-ended Text Generation [3.9945212716333063]
Implicit biases are significant because they influence the decisions made by Large Language Models (LLMs)
Traditionally, explicit bias tests or embedding-based methods are employed to detect bias, but these approaches can overlook more nuanced, implicit forms of bias.
We introduce two novel psychological-inspired methodologies to reveal and measure implicit biases through prompt-based and decision-making tasks.
arXiv Detail & Related papers (2024-07-01T13:21:33Z) - Take its Essence, Discard its Dross! Debiasing for Toxic Language Detection via Counterfactual Causal Effect [23.628565620485364]
We propose a Counterfactual Causal Debiasing Framework (CCDF) to mitigate lexical bias in toxic language detection (TLD)
CCDF preserves the "useful impact" of lexical bias and eliminates the "misleading impact"
arXiv Detail & Related papers (2024-06-03T04:34:30Z) - Mitigating Biases for Instruction-following Language Models via Bias Neurons Elimination [54.865941973768905]
We propose a novel and practical bias mitigation method, CRISPR, to eliminate bias neurons of language models in instruction-following settings.
CRISPR automatically determines biased outputs and categorizes neurons that affect the biased outputs as bias neurons using an explainability method.
Experimental results demonstrate the effectiveness of our method in mitigating biases under zero-shot instruction-following settings without losing the model's task performance and existing knowledge.
arXiv Detail & Related papers (2023-11-16T07:16:55Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
Large Language Models (LLMs) have sparked intense debate regarding the prevalence of bias in these models and its mitigation.
We propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the decision process.
We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment.
arXiv Detail & Related papers (2023-11-15T00:02:25Z) - Feature-Level Debiased Natural Language Understanding [86.8751772146264]
Existing natural language understanding (NLU) models often rely on dataset biases to achieve high performance on specific datasets.
We propose debiasing contrastive learning (DCT) to mitigate biased latent features and neglect the dynamic nature of bias.
DCT outperforms state-of-the-art baselines on out-of-distribution datasets while maintaining in-distribution performance.
arXiv Detail & Related papers (2022-12-11T06:16:14Z) - Mind Your Bias: A Critical Review of Bias Detection Methods for
Contextual Language Models [2.170169149901781]
We conduct a rigorous analysis and comparison of bias detection methods for contextual language models.
Our results show that minor design and implementation decisions (or errors) have a substantial and often significant impact on the derived bias scores.
arXiv Detail & Related papers (2022-11-15T19:27:54Z) - Towards an Enhanced Understanding of Bias in Pre-trained Neural Language
Models: A Survey with Special Emphasis on Affective Bias [2.6304695993930594]
We present a survey to comprehend bias in large pre-trained language models, analyze the stages at which they occur, and various ways in which these biases could be quantified and mitigated.
Considering wide applicability of textual affective computing based downstream tasks in real-world systems such as business, healthcare, education, etc., we give a special emphasis on investigating bias in the context of affect (emotion) i.e., Affective Bias.
We present a summary of various bias evaluation corpora that help to aid future research and discuss challenges in the research on bias in pre-trained language models.
arXiv Detail & Related papers (2022-04-21T18:51:19Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
Bias in natural language processing arises from models learning characteristics of the author such as gender and race.
Existing methods for mitigating and measuring bias do not directly account for correlations between author demographics and linguistic variables.
This paper introduces a very simple but highly effective method for countering bias using instance reweighting.
arXiv Detail & Related papers (2021-09-16T23:40:28Z) - Mitigating Biases in Toxic Language Detection through Invariant
Rationalization [70.36701068616367]
biases toward some attributes, including gender, race, and dialect, exist in most training datasets for toxicity detection.
We propose to use invariant rationalization (InvRat), a game-theoretic framework consisting of a rationale generator and a predictor, to rule out the spurious correlation of certain syntactic patterns.
Our method yields lower false positive rate in both lexical and dialectal attributes than previous debiasing methods.
arXiv Detail & Related papers (2021-06-14T08:49:52Z) - Challenges in Automated Debiasing for Toxic Language Detection [81.04406231100323]
Biased associations have been a challenge in the development of classifiers for detecting toxic language.
We investigate recently introduced debiasing methods for text classification datasets and models, as applied to toxic language detection.
Our focus is on lexical (e.g., swear words, slurs, identity mentions) and dialectal markers (specifically African American English)
arXiv Detail & Related papers (2021-01-29T22:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.