論文の概要: Generative Design Ideation: A Natural Language Generation Approach
- arxiv url: http://arxiv.org/abs/2204.09658v1
- Date: Mon, 28 Mar 2022 08:11:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-24 23:54:34.972404
- Title: Generative Design Ideation: A Natural Language Generation Approach
- Title(参考訳): 生成設計の考え方:自然言語生成アプローチ
- Authors: Qihao Zhu and Jianxi Luo
- Abstract要約: 本稿では,人工知能(AI)における最新の事前学習言語モデルの適用により,知識に基づく設計概念の生成的アプローチを検討することを目的とする。
AI生成されたアイデアは、簡潔で理解可能な言語であるだけでなく、制御可能な知識距離を持つ外部知識ソースでターゲット設計を合成することができる。
- 参考スコア(独自算出の注目度): 7.807713821263175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper aims to explore a generative approach for knowledge-based design
ideation by applying the latest pre-trained language models in artificial
intelligence (AI). Specifically, a method of fine-tuning the generative
pre-trained transformer using the USPTO patent database is proposed. The
AI-generated ideas are not only in concise and understandable language but also
able to synthesize the target design with external knowledge sources with
controllable knowledge distance. The method is tested in a case study of
rolling toy design and the results show good performance in generating ideas of
varied novelty with near-field and far-field source knowledge.
- Abstract(参考訳): 本稿では,人工知能(AI)における最新の事前学習言語モデルの適用により,知識に基づく設計概念の生成的アプローチを検討することを目的とする。
具体的には,USPTO特許データベースを用いて生成前訓練トランスを微調整する方法を提案する。
AI生成されたアイデアは、簡潔で理解可能な言語だけではなく、制御可能な知識距離を持つ外部知識ソースでターゲット設計を合成することができる。
本手法は, 転がり玩具設計のケーススタディにおいて試験され, 実験結果から, 近距離場および遠距離フィールドの知識を持つ様々な新規性の概念を創出する上で, 優れた性能を示した。
関連論文リスト
- A Novel Idea Generation Tool using a Structured Conversational AI (CAI) System [0.0]
本稿では、初心者デザイナーを支援する創造的アイデア生成ツールとして、対話型AIを活用したアクティブなアイデア生成インタフェースを提案する。
これは動的でインタラクティブで文脈に応答するアプローチであり、人工知能(AI)における自然言語処理(NLP)の領域から大きな言語モデル(LLM)を積極的に巻き込む。
このようなAIモデルとアイデアの統合は、連続的な対話ベースのインタラクション、コンテキストに敏感な会話、多彩なアイデア生成の促進に役立つ、アクティブな理想化(Active Ideation)シナリオと呼ばれるものを生み出します。
論文 参考訳(メタデータ) (2024-09-09T16:02:27Z) - Who Writes the Review, Human or AI? [0.36498648388765503]
本研究では,AIによる書評と人間による書評を正確に区別する手法を提案する。
提案手法は移動学習を利用して,異なるトピック間で生成したテキストを識別する。
実験の結果、元のテキストのソースを検出でき、精度96.86%に達することが示されている。
論文 参考訳(メタデータ) (2024-05-30T17:38:44Z) - LB-KBQA: Large-language-model and BERT based Knowledge-Based Question
and Answering System [7.626368876843794]
本稿では,Large Language Model(LLM)とBERT(LB-KBQA)に基づく新しいKBQAシステムを提案する。
生成AIの助けを借りて,提案手法は新たに出現した意図を検知し,新たな知識を得ることができた。
ファイナンシャルドメイン質問応答の実験では,本モデルの方が優れた効果を示した。
論文 参考訳(メタデータ) (2024-02-05T16:47:17Z) - Learning Transferable Conceptual Prototypes for Interpretable
Unsupervised Domain Adaptation [79.22678026708134]
本稿では,Transferable Prototype Learning (TCPL) という,本質的に解釈可能な手法を提案する。
この目的を達成するために、ソースドメインからターゲットドメインにカテゴリの基本概念を転送する階層的なプロトタイプモジュールを設計し、基礎となる推論プロセスを説明するためにドメイン共有プロトタイプを学習する。
総合的な実験により,提案手法は有効かつ直感的な説明を提供するだけでなく,従来の最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-12T06:36:41Z) - UNTER: A Unified Knowledge Interface for Enhancing Pre-trained Language
Models [100.4659557650775]
構造化知識と非構造化知識の両方を活用する統一的な視点を提供するために、統一知識インターフェイスUNTERを提案する。
どちらの形態の知識も注入され、UNTERは一連の知識駆動NLPタスクの継続的な改善を得る。
論文 参考訳(メタデータ) (2023-05-02T17:33:28Z) - Generative Transformers for Design Concept Generation [7.807713821263175]
本研究では,人工知能(AI)分野における自然言語生成技術(NLG)の最近の進歩について考察する。
テキストデータからの知識と推論を活用するために,GPT(Generative Pre-trained Transformer)を用いた新しい手法を提案する。
3つの概念生成タスクは、異なる知識と推論(ドメイン知識合成、問題駆動合成、アナログ駆動合成)を活用するために定義される。
論文 参考訳(メタデータ) (2022-11-07T11:29:10Z) - Generative Pre-Trained Transformers for Biologically Inspired Design [13.852758740799452]
本稿では,事前学習言語モデル(PLM)に基づく生成設計手法を提案する。
問題空間表現のゆるさに応じて、3種類の設計概念生成器をPLMから同定し、微調整する。
このアプローチは、自然にインスパイアされた軽量の空飛ぶ車の概念の生成と評価に微調整されたモデルを適用するケーススタディによってテストされる。
論文 参考訳(メタデータ) (2022-03-31T11:13:22Z) - Kformer: Knowledge Injection in Transformer Feed-Forward Layers [107.71576133833148]
そこで我々は,Transformerのフィードフォワード層を通じて外部知識を組み込んだ新しい知識融合モデルKformerを提案する。
FFNに単に知識を注入するだけで、事前学習された言語モデルの能力が向上し、現在の知識融合法が促進されることを実証的に見出した。
論文 参考訳(メタデータ) (2022-01-15T03:00:27Z) - KAT: A Knowledge Augmented Transformer for Vision-and-Language [56.716531169609915]
我々は、OK-VQAのオープンドメインマルチモーダルタスクにおいて、最先端の強力な結果をもたらす新しいモデルである知識拡張トランスフォーマー(KAT)を提案する。
提案手法は,エンド・ツー・エンドのエンコーダ・デコーダアーキテクチャにおいて暗黙的かつ明示的な知識を統合しつつ,回答生成時に両知識源を共同で推論する。
我々の分析では、モデル予測の解釈可能性の向上に、明示的な知識統合のさらなる利点が見られる。
論文 参考訳(メタデータ) (2021-12-16T04:37:10Z) - Knowledge-Grounded Dialogue Generation with Pre-trained Language Models [74.09352261943911]
我々は、事前学習された言語モデルを用いた知識基底対話生成について研究する。
本稿では,知識選択モジュールを用いた事前学習言語モデルによって定義された等価応答生成を提案する。
論文 参考訳(メタデータ) (2020-10-17T16:49:43Z) - Exploring Software Naturalness through Neural Language Models [56.1315223210742]
ソフトウェア自然性仮説(Software Naturalness hypothesis)は、自然言語処理で使用されるのと同じ手法でプログラミング言語を理解することができると主張している。
この仮説は,事前学習されたトランスフォーマーベース言語モデルを用いて,コード解析タスクを実行することによって検討する。
論文 参考訳(メタデータ) (2020-06-22T21:56:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。