Multi-Scale Features and Parallel Transformers Based Image Quality
Assessment
- URL: http://arxiv.org/abs/2204.09779v1
- Date: Wed, 20 Apr 2022 20:38:23 GMT
- Title: Multi-Scale Features and Parallel Transformers Based Image Quality
Assessment
- Authors: Abhisek Keshari, Komal, Sadbhawna, Badri Subudhi
- Abstract summary: We propose a new architecture for image quality assessment using transformer networks and multi-scale feature extraction.
Our experimentation on various datasets, including the PIPAL dataset, demonstrates that the proposed integration technique outperforms existing algorithms.
- Score: 0.6554326244334866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increase in multimedia content, the type of distortions associated
with multimedia is also increasing. This problem of image quality assessment is
expanded well in the PIPAL dataset, which is still an open problem to solve for
researchers. Although, recently proposed transformers networks have already
been used in the literature for image quality assessment. At the same time, we
notice that multi-scale feature extraction has proven to be a promising
approach for image quality assessment. However, the way transformer networks
are used for image quality assessment until now lacks these properties of
multi-scale feature extraction. We utilized this fact in our approach and
proposed a new architecture by integrating these two promising quality
assessment techniques of images. Our experimentation on various datasets,
including the PIPAL dataset, demonstrates that the proposed integration
technique outperforms existing algorithms. The source code of the proposed
algorithm is available online: https://github.com/KomalPal9610/IQA
Related papers
- A Global Depth-Range-Free Multi-View Stereo Transformer Network with Pose Embedding [76.44979557843367]
We propose a novel multi-view stereo (MVS) framework that gets rid of the depth range prior.
We introduce a Multi-view Disparity Attention (MDA) module to aggregate long-range context information.
We explicitly estimate the quality of the current pixel corresponding to sampled points on the epipolar line of the source image.
arXiv Detail & Related papers (2024-11-04T08:50:16Z) - Q-Ground: Image Quality Grounding with Large Multi-modality Models [61.72022069880346]
We introduce Q-Ground, the first framework aimed at tackling fine-scale visual quality grounding.
Q-Ground combines large multi-modality models with detailed visual quality analysis.
Central to our contribution is the introduction of the QGround-100K dataset.
arXiv Detail & Related papers (2024-07-24T06:42:46Z) - Progressive Feature Fusion Network for Enhancing Image Quality
Assessment [8.06731856250435]
We propose a new image quality assessment framework to decide which image is better in an image group.
To capture the subtle differences, a fine-grained network is adopted to acquire multi-scale features.
Experimental results show that compared with the current mainstream image quality assessment methods, the proposed network can achieve more accurate image quality assessment.
arXiv Detail & Related papers (2024-01-13T06:34:32Z) - Transformer-based No-Reference Image Quality Assessment via Supervised
Contrastive Learning [36.695247860715874]
We propose a novel Contrastive Learning (SCL) and Transformer-based NR-IQA model SaTQA.
We first train a model on a large-scale synthetic dataset by SCL to extract degradation features of images with various distortion types and levels.
To further extract distortion information from images, we propose a backbone network incorporating the Multi-Stream Block (MSB) by combining the CNN inductive bias and Transformer long-term dependence modeling capability.
Experimental results on seven standard IQA datasets show that SaTQA outperforms the state-of-the-art methods for both synthetic and authentic datasets
arXiv Detail & Related papers (2023-12-12T06:01:41Z) - Assessor360: Multi-sequence Network for Blind Omnidirectional Image
Quality Assessment [50.82681686110528]
Blind Omnidirectional Image Quality Assessment (BOIQA) aims to objectively assess the human perceptual quality of omnidirectional images (ODIs)
The quality assessment of ODIs is severely hampered by the fact that the existing BOIQA pipeline lacks the modeling of the observer's browsing process.
We propose a novel multi-sequence network for BOIQA called Assessor360, which is derived from the realistic multi-assessor ODI quality assessment procedure.
arXiv Detail & Related papers (2023-05-18T13:55:28Z) - Test your samples jointly: Pseudo-reference for image quality evaluation [3.2634122554914]
We propose to jointly model different images depicting the same content to improve the precision of quality estimation.
Our experiments show that at test-time, our method successfully combines the features from multiple images depicting the same new content, improving estimation quality.
arXiv Detail & Related papers (2023-04-07T17:59:27Z) - MSTRIQ: No Reference Image Quality Assessment Based on Swin Transformer
with Multi-Stage Fusion [8.338999282303755]
We propose a novel algorithm based on the Swin Transformer.
It aggregates information from both local and global features to better predict the quality.
It ranks 2nd in the no-reference track of NTIRE 2022 Perceptual Image Quality Assessment Challenge.
arXiv Detail & Related papers (2022-05-20T11:34:35Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - MUSIQ: Multi-scale Image Quality Transformer [22.908901641767688]
Current state-of-the-art IQA methods are based on convolutional neural networks (CNNs)
We design a multi-scale image quality Transformer (MUSIQ) to process native resolution images with varying sizes and aspect ratios.
With a multi-scale image representation, our proposed method can capture image quality at different granularities.
arXiv Detail & Related papers (2021-08-12T23:36:22Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.