論文の概要: Deep transfer learning for partial differential equations under
conditional shift with DeepONet
- arxiv url: http://arxiv.org/abs/2204.09810v1
- Date: Wed, 20 Apr 2022 23:23:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-22 14:00:26.860590
- Title: Deep transfer learning for partial differential equations under
conditional shift with DeepONet
- Title(参考訳): DeepONetを用いた条件シフトによる偏微分方程式のディープラーニング学習
- Authors: Somdatta Goswami, Katiana Kontolati, Michael D. Shields, George Em
Karniadakis
- Abstract要約: 深層演算子ネットワーク(DeepONet)を用いた条件シフト下でのタスク固有学習のための新しいTLフレームワークを提案する。
条件埋め込み演算子理論に触発されて、ソース領域とターゲット特徴領域の間の統計的距離を測定する。
提案するTLフレームワークは,ソースドメインとターゲットドメインの間に大きな違いがあるにも関わらず,高速かつ効率的なマルチタスク演算子学習を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional machine learning algorithms are designed to learn in isolation,
i.e. address single tasks. The core idea of transfer learning (TL) is that
knowledge gained in learning to perform one task (source) can be leveraged to
improve learning performance in a related, but different, task (target). TL
leverages and transfers previously acquired knowledge to address the expense of
data acquisition and labeling, potential computational power limitations, and
the dataset distribution mismatches. Although significant progress has been
made in the fields of image processing, speech recognition, and natural
language processing (for classification and regression) for TL, little work has
been done in the field of scientific machine learning for functional regression
and uncertainty quantification in partial differential equations. In this work,
we propose a novel TL framework for task-specific learning under conditional
shift with a deep operator network (DeepONet). Inspired by the conditional
embedding operator theory, we measure the statistical distance between the
source domain and the target feature domain by embedding conditional
distributions onto a reproducing kernel Hilbert space. Task-specific operator
learning is accomplished by fine-tuning task-specific layers of the target
DeepONet using a hybrid loss function that allows for the matching of
individual target samples while also preserving the global properties of the
conditional distribution of target data. We demonstrate the advantages of our
approach for various TL scenarios involving nonlinear PDEs under conditional
shift. Our results include geometry domain adaptation and show that the
proposed TL framework enables fast and efficient multi-task operator learning,
despite significant differences between the source and target domains.
- Abstract(参考訳): 従来の機械学習アルゴリズムは、独立して学習するように設計されている。
伝達学習(TL)の中核的な考え方は、1つのタスク(ソース)を実行するための学習で得られた知識を、関連するが異なるタスク(ターゲット)での学習性能を改善するために利用することができることである。
TLは、データ取得とラベル付けのコスト、潜在的な計算能力制限、データセットの分布ミスマッチに対処するために、以前取得した知識を活用して転送する。
TLの画像処理、音声認識、自然言語処理(分類と回帰)の分野では大きな進歩があったが、偏微分方程式における機能的回帰と不確かさの定量化のための科学機械学習の分野ではほとんど行われていない。
本研究では,DeepONet(DeepONet)を用いた条件シフト下でのタスク固有学習のための新しいTLフレームワークを提案する。
条件付き埋め込み作用素理論に着想を得て、条件付き分布を再生核ヒルベルト空間に埋め込むことにより、ソース領域と対象特徴領域の間の統計的距離を測定する。
タスク固有の演算子学習は、ターゲットデータの条件分布のグローバルな特性を保ちながら、個々のターゲットサンプルのマッチングを可能にするハイブリッド損失関数を使用して、ターゲットのDeepONetのタスク固有の層を微調整することで達成される。
条件シフト中の非線形PDEを含む様々なTLシナリオに対して,本手法の利点を示す。
提案するTLフレームワークは,ソースドメインとターゲットドメインの間に大きな違いがあるにもかかわらず,高速かつ効率的なマルチタスク演算子学習を可能にすることを示す。
関連論文リスト
- Features are fate: a theory of transfer learning in high-dimensional regression [23.840251319669907]
対象タスクが事前学習されたモデルの特徴空間で適切に表現されている場合、転送学習はスクラッチからトレーニングに優れることを示す。
本モデルでは, 音源と目標タスクの重なり合う特徴空間が十分に強い場合, 線形転送と微調整の両方で性能が向上することを確認した。
論文 参考訳(メタデータ) (2024-10-10T17:58:26Z) - Curriculum Reinforcement Learning using Optimal Transport via Gradual
Domain Adaptation [46.103426976842336]
強化学習(CRL)は、簡単なタスクから始まり、徐々に難しいタスクへと学習する一連のタスクを作成することを目的としている。
本研究では、ソース(補助的)とターゲットタスク分布の間のカリキュラムとしてCRLをフレーミングするという考え方に焦点をあてる。
半教師付き学習における段階的ドメイン適応の洞察に触発されて、CRLのタスク分散シフトを小さなシフトに分解することで、自然なカリキュラムを作成する。
論文 参考訳(メタデータ) (2022-10-18T22:33:33Z) - Self-Supervised Graph Neural Network for Multi-Source Domain Adaptation [51.21190751266442]
ドメイン適応(DA)は、テストデータがトレーニングデータの同じ分布に完全に従わない場合に、シナリオに取り組む。
大規模未ラベルサンプルから学習することで、自己教師型学習がディープラーニングの新しいトレンドとなっている。
我々は,より効果的なタスク間情報交換と知識共有を実現するために,新しい textbfSelf-textbf Supervised textbfGraph Neural Network (SSG) を提案する。
論文 参考訳(メタデータ) (2022-04-08T03:37:56Z) - Counting with Adaptive Auxiliary Learning [23.715818463425503]
本稿では,オブジェクトカウント問題に対する適応型補助的タスク学習に基づくアプローチを提案する。
本研究では,タスク共有とタスクカスタマイズの両機能学習を実現するために,アダプティブ・アダプティブ・アダプティブ・共有バックボーンネットワークを開発した。
本手法は,現在最先端のタスク学習に基づくカウント手法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2022-03-08T13:10:17Z) - On Generalizing Beyond Domains in Cross-Domain Continual Learning [91.56748415975683]
ディープニューラルネットワークは、新しいタスクを学んだ後、これまで学んだ知識の破滅的な忘れ込みに悩まされることが多い。
提案手法は、ドメインシフト中の新しいタスクを精度良く学習することで、DomainNetやOfficeHomeといった挑戦的なデータセットで最大10%向上する。
論文 参考訳(メタデータ) (2022-03-08T09:57:48Z) - Gap Minimization for Knowledge Sharing and Transfer [24.954256258648982]
本稿では,学習課題間の距離の直感的かつ新しい尺度であるエンファンパシーギャップの概念を紹介する。
性能ギャップをデータおよびアルゴリズムに依存した正規化器とみなすことができ、モデルの複雑さを制御し、より詳細な保証をもたらす。
私たちはこの原理を2つのアルゴリズムでインスタンス化する: 1. gapBoost, トランスファーラーニングのためのソースとターゲットドメイン間のパフォーマンスギャップを明示的に最小化する新規で原則化されたブースティングアルゴリズム; 2. gapMTNN, ギャップ最小化をセマンティック条件マッチングとして再構成する表現学習アルゴリズム
論文 参考訳(メタデータ) (2022-01-26T23:06:20Z) - Distribution Matching for Heterogeneous Multi-Task Learning: a
Large-scale Face Study [75.42182503265056]
マルチタスク学習は、共有学習アルゴリズムによって複数のタスクを共同で学習する方法論として登場した。
我々は異種mtlに対処し,検出,分類,回帰問題を同時に解決する。
大規模な顔分析のための最初のフレームワークであるFaceBehaviorNetを構築し、すべての顔行動タスクを共同で学習する。
論文 参考訳(メタデータ) (2021-05-08T22:26:52Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
我々は,様々なタスクを解くことを目的とした回帰関数の集合を適合させることで,マルチタスク学習と呼ばれる問題を考える。
我々の新しい定式化では、これらの関数のパラメータを2つに分けて、互いに近づきながらタスク固有のドメインで学習する。
これにより、異なるドメインにまたがって収集されたデータが、互いのタスクにおける学習パフォーマンスを改善するのに役立つ、クロス・ファーティライズが促進される。
論文 参考訳(メタデータ) (2020-10-24T21:35:57Z) - Uniform Priors for Data-Efficient Transfer [65.086680950871]
もっとも移動可能な特徴は埋め込み空間において高い均一性を有することを示す。
我々は、未確認のタスクやデータへの適応を容易にする能力の正規化を評価する。
論文 参考訳(メタデータ) (2020-06-30T04:39:36Z) - Minimax Lower Bounds for Transfer Learning with Linear and One-hidden
Layer Neural Networks [27.44348371795822]
転送学習の限界を特徴付けるための統計的ミニマックスフレームワークを開発する。
ラベル付きソース数とターゲットデータの関数として,任意のアルゴリズムで達成可能なターゲット一般化誤差に対して,低いバウンドを導出する。
論文 参考訳(メタデータ) (2020-06-16T22:49:26Z) - Exploring and Predicting Transferability across NLP Tasks [115.6278033699853]
本研究では,33のNLPタスク間の伝達可能性について検討した。
以上の結果から,転帰学習は従来考えられていたよりも有益であることが示唆された。
また,特定の対象タスクに対して最も転送可能なソースタスクを予測するために使用できるタスク埋め込みも開発した。
論文 参考訳(メタデータ) (2020-05-02T09:39:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。