FedCL: Federated Contrastive Learning for Privacy-Preserving
Recommendation
- URL: http://arxiv.org/abs/2204.09850v1
- Date: Thu, 21 Apr 2022 02:37:10 GMT
- Title: FedCL: Federated Contrastive Learning for Privacy-Preserving
Recommendation
- Authors: Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang, Xing Xie
- Abstract summary: FedCL can exploit high-quality negative samples for effective model training with privacy well protected.
We first infer user embeddings from local user data through the local model on each client, and then perturb them with local differential privacy (LDP)
Since individual user embedding contains heavy noise due to LDP, we propose to cluster user embeddings on the server to mitigate the influence of noise.
- Score: 98.5705258907774
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contrastive learning is widely used for recommendation model learning, where
selecting representative and informative negative samples is critical. Existing
methods usually focus on centralized data, where abundant and high-quality
negative samples are easy to obtain. However, centralized user data storage and
exploitation may lead to privacy risks and concerns, while decentralized user
data on a single client can be too sparse and biased for accurate contrastive
learning. In this paper, we propose a federated contrastive learning method
named FedCL for privacy-preserving recommendation, which can exploit
high-quality negative samples for effective model training with privacy well
protected. We first infer user embeddings from local user data through the
local model on each client, and then perturb them with local differential
privacy (LDP) before sending them to a central server for hard negative
sampling. Since individual user embedding contains heavy noise due to LDP, we
propose to cluster user embeddings on the server to mitigate the influence of
noise, and the cluster centroids are used to retrieve hard negative samples
from the item pool. These hard negative samples are delivered to user clients
and mixed with the observed negative samples from local data as well as
in-batch negatives constructed from positive samples for federated model
training. Extensive experiments on four benchmark datasets show FedCL can
empower various recommendation methods in a privacy-preserving way.
Related papers
- FedDiv: Collaborative Noise Filtering for Federated Learning with Noisy
Labels [99.70895640578816]
Federated learning with noisy labels (F-LNL) aims at seeking an optimal server model via collaborative distributed learning.
We present FedDiv to tackle the challenges of F-LNL. Specifically, we propose a global noise filter called Federated Noise Filter.
arXiv Detail & Related papers (2023-12-19T15:46:47Z) - FedSampling: A Better Sampling Strategy for Federated Learning [81.85411484302952]
Federated learning (FL) is an important technique for learning models from decentralized data in a privacy-preserving way.
Existing FL methods usually uniformly sample clients for local model learning in each round.
We propose a novel data uniform sampling strategy for federated learning (FedSampling)
arXiv Detail & Related papers (2023-06-25T13:38:51Z) - When to Trust Aggregated Gradients: Addressing Negative Client Sampling
in Federated Learning [41.51682329500003]
We propose a novel learning rate adaptation mechanism to adjust the server learning rate for the aggregated gradient in each round.
We make theoretical deductions to find a meaningful and robust indicator that is positively related to the optimal server learning rate.
arXiv Detail & Related papers (2023-01-25T03:52:45Z) - FedSPLIT: One-Shot Federated Recommendation System Based on Non-negative
Joint Matrix Factorization and Knowledge Distillation [7.621960305708476]
We present the first unsupervised one-shot federated CF implementation, named FedSPLIT, based on NMF joint factorization.
FedSPLIT can obtain similar results than the state of the art (and even outperform it in certain situations) with a substantial decrease in the number of communications.
arXiv Detail & Related papers (2022-05-04T23:42:14Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
Open-set semi-supervised learning (open-set SSL) investigates a challenging but practical scenario where out-of-distribution (OOD) samples are contained in the unlabeled data.
We propose a novel training mechanism that could effectively exploit the presence of OOD data for enhanced feature learning.
Our approach substantially lifts the performance on open-set SSL and outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2021-08-12T09:14:44Z) - Rethinking InfoNCE: How Many Negative Samples Do You Need? [54.146208195806636]
We study how many negative samples are optimal for InfoNCE in different scenarios via a semi-quantitative theoretical framework.
We estimate the optimal negative sampling ratio using the $K$ value that maximizes the training effectiveness function.
arXiv Detail & Related papers (2021-05-27T08:38:29Z) - Doubly Contrastive Deep Clustering [135.7001508427597]
We present a novel Doubly Contrastive Deep Clustering (DCDC) framework, which constructs contrastive loss over both sample and class views.
Specifically, for the sample view, we set the class distribution of the original sample and its augmented version as positive sample pairs.
For the class view, we build the positive and negative pairs from the sample distribution of the class.
In this way, two contrastive losses successfully constrain the clustering results of mini-batch samples in both sample and class level.
arXiv Detail & Related papers (2021-03-09T15:15:32Z) - Auto-weighted Robust Federated Learning with Corrupted Data Sources [7.475348174281237]
Federated learning provides a communication-efficient and privacy-preserving training process.
Standard federated learning techniques that naively minimize an average loss function are vulnerable to data corruptions.
We propose Auto-weighted Robust Federated Learning (arfl) to provide robustness against corrupted data sources.
arXiv Detail & Related papers (2021-01-14T21:54:55Z) - Sampler Design for Implicit Feedback Data by Noisy-label Robust Learning [32.76804332450971]
We design an adaptive sampler based on noisy-label robust learning for implicit feedback data.
We predict users' preferences with the model and learn it by maximizing likelihood of observed data labels.
We then consider the risk of these noisy labels, and propose a Noisy-label Robust BPO.
arXiv Detail & Related papers (2020-06-28T05:31:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.