FedSPLIT: One-Shot Federated Recommendation System Based on Non-negative
Joint Matrix Factorization and Knowledge Distillation
- URL: http://arxiv.org/abs/2205.02359v1
- Date: Wed, 4 May 2022 23:42:14 GMT
- Title: FedSPLIT: One-Shot Federated Recommendation System Based on Non-negative
Joint Matrix Factorization and Knowledge Distillation
- Authors: Maksim E. Eren, Luke E. Richards, Manish Bhattarai, Roberto Yus,
Charles Nicholas, Boian S. Alexandrov
- Abstract summary: We present the first unsupervised one-shot federated CF implementation, named FedSPLIT, based on NMF joint factorization.
FedSPLIT can obtain similar results than the state of the art (and even outperform it in certain situations) with a substantial decrease in the number of communications.
- Score: 7.621960305708476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-negative matrix factorization (NMF) with missing-value completion is a
well-known effective Collaborative Filtering (CF) method used to provide
personalized user recommendations. However, traditional CF relies on the
privacy-invasive collection of users' explicit and implicit feedback to build a
central recommender model. One-shot federated learning has recently emerged as
a method to mitigate the privacy problem while addressing the traditional
communication bottleneck of federated learning. In this paper, we present the
first unsupervised one-shot federated CF implementation, named FedSPLIT, based
on NMF joint factorization. In our solution, the clients first apply local CF
in-parallel to build distinct client-specific recommenders. Then, the
privacy-preserving local item patterns and biases from each client are shared
with the processor to perform joint factorization in order to extract the
global item patterns. Extracted patterns are then aggregated to each client to
build the local models via knowledge distillation. In our experiments, we
demonstrate the feasibility of our approach with standard recommendation
datasets. FedSPLIT can obtain similar results than the state of the art (and
even outperform it in certain situations) with a substantial decrease in the
number of communications.
Related papers
- Personalized Federated Learning for Cross-view Geo-localization [49.40531019551957]
We propose a methodology combining Federated Learning (FL) with Cross-view Image Geo-localization (CVGL) techniques.
Our method implements a coarse-to-fine approach, where clients share only the coarse feature extractors while keeping fine-grained features specific to local environments.
Results demonstrate that our federated CVGL method achieves performance close to centralized training while maintaining data privacy.
arXiv Detail & Related papers (2024-11-07T13:25:52Z) - Co-clustering for Federated Recommender System [33.70723179405055]
Federated Recommender System (FRS) offers a solution that strikes a balance between providing high-quality recommendations and preserving user privacy.
The presence of statistical heterogeneity in FRS, commonly observed due to personalized decision-making patterns, can pose challenges.
We propose CoFedRec, a novel Co-clustering Federated Recommendation mechanism.
arXiv Detail & Related papers (2024-11-03T21:32:07Z) - Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
The recommender system (RSRS) addresses both user preference and privacy concerns.
We propose a novel method that incorporates non-uniform gradient descent to improve communication efficiency.
RFRecF's superior robustness compared to diverse baselines.
arXiv Detail & Related papers (2024-11-03T12:10:20Z) - Personalized Federated Collaborative Filtering: A Variational AutoEncoder Approach [49.63614966954833]
Federated Collaborative Filtering (FedCF) is an emerging field focused on developing a new recommendation framework with preserving privacy.
This paper proposes a novel personalized FedCF method by preserving users' personalized information into a latent variable and a neural model simultaneously.
To effectively train the proposed framework, we model the problem as a specialized Variational AutoEncoder (VAE) task by integrating user interaction vector reconstruction with missing value prediction.
arXiv Detail & Related papers (2024-08-16T05:49:14Z) - Beyond Similarity: Personalized Federated Recommendation with Composite Aggregation [22.359428566363945]
Federated recommendation aims to collect global knowledge by aggregating local models from massive devices.
Current methods mainly leverage aggregation functions invented by federated vision community to aggregate parameters from similar clients.
We propose a personalized Federated recommendation model with Composite Aggregation (FedCA)
arXiv Detail & Related papers (2024-06-06T10:17:52Z) - PGFed: Personalize Each Client's Global Objective for Federated Learning [7.810284483002312]
We propose a novel personalized FL framework that enables each client to personalize its own global objective.
To avoid massive (O(N2)) communication overhead and potential privacy leakage, each client's risk is estimated through a first-order approximation for other clients' adaptive risk aggregation.
Our experiments on four datasets under different federated settings show consistent improvements of PGFed over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-12-02T21:16:39Z) - User-Specific Bicluster-based Collaborative Filtering: Handling
Preference Locality, Sparsity and Subjectivity [1.0398909602421018]
Collaborative Filtering (CF) is the most common approach to build Recommender Systems.
We propose USBFC, a Biclustering-based CF approach that creates user-specific models from strongly coherent and statistically significant rating patterns.
USBFC achieves competitive predictive accuracy against state-of-the-art CF methods.
arXiv Detail & Related papers (2022-11-15T18:10:52Z) - FedCL: Federated Contrastive Learning for Privacy-Preserving
Recommendation [98.5705258907774]
FedCL can exploit high-quality negative samples for effective model training with privacy well protected.
We first infer user embeddings from local user data through the local model on each client, and then perturb them with local differential privacy (LDP)
Since individual user embedding contains heavy noise due to LDP, we propose to cluster user embeddings on the server to mitigate the influence of noise.
arXiv Detail & Related papers (2022-04-21T02:37:10Z) - On the Convergence of Clustered Federated Learning [57.934295064030636]
In a federated learning system, the clients, e.g. mobile devices and organization participants, usually have different personal preferences or behavior patterns.
This paper proposes a novel weighted client-based clustered FL algorithm to leverage the client's group and each client in a unified optimization framework.
arXiv Detail & Related papers (2022-02-13T02:39:19Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.