Understanding the Domain Gap in LiDAR Object Detection Networks
- URL: http://arxiv.org/abs/2204.10024v1
- Date: Thu, 21 Apr 2022 11:18:48 GMT
- Title: Understanding the Domain Gap in LiDAR Object Detection Networks
- Authors: Jasmine Richter, Florian Faion, Di Feng, Paul Benedikt Becker, Piotr
Sielecki and Claudius Glaeser
- Abstract summary: We show two distinct domain gaps - an inference domain gap and a training domain gap.
The inference gap is characterised by a strong dependence on the number of LiDAR points per object, while the training gap shows no such dependence.
These fndings show that different approaches are required to close these inference and training domain gaps.
- Score: 1.6661840375100232
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to make autonomous driving a reality, artificial neural networks
have to work reliably in the open-world. However, the open-world is vast and
continuously changing, so it is not technically feasible to collect and
annotate training datasets which accurately represent this domain. Therefore,
there are always domain gaps between training datasets and the open-world which
must be understood. In this work, we investigate the domain gaps between
high-resolution and low-resolution LiDAR sensors in object detection networks.
Using a unique dataset, which enables us to study sensor resolution domain gaps
independent of other effects, we show two distinct domain gaps - an inference
domain gap and a training domain gap. The inference domain gap is characterised
by a strong dependence on the number of LiDAR points per object, while the
training gap shows no such dependence. These fndings show that different
approaches are required to close these inference and training domain gaps.
Related papers
- Domain Adaptive Few-Shot Open-Set Learning [36.39622440120531]
We propose Domain Adaptive Few-Shot Open Set Recognition (DA-FSOS) and introduce a meta-learning-based architecture named DAFOSNET.
Our training approach ensures that DAFOS-NET can generalize well to new scenarios in the target domain.
We present three benchmarks for DA-FSOS based on the Office-Home, mini-ImageNet/CUB, and DomainNet datasets.
arXiv Detail & Related papers (2023-09-22T12:04:47Z) - Context-aware Domain Adaptation for Time Series Anomaly Detection [69.3488037353497]
Time series anomaly detection is a challenging task with a wide range of real-world applications.
Recent efforts have been devoted to time series domain adaptation to leverage knowledge from similar domains.
We propose a framework that combines context sampling and anomaly detection into a joint learning procedure.
arXiv Detail & Related papers (2023-04-15T02:28:58Z) - Cross-Modality Domain Adaptation for Freespace Detection: A Simple yet
Effective Baseline [21.197212665408262]
Freespace detection aims at classifying each pixel of the image captured by the camera as drivable or non-drivable.
We develop a cross-modality domain adaptation framework which exploits both RGB images and surface normal maps generated from depth images.
To better bridge the domain gap between source domain (synthetic data) and target domain (real-world data), we also propose a Selective Feature Alignment (SFA) module.
arXiv Detail & Related papers (2022-10-06T15:31:49Z) - Gated Domain Units for Multi-source Domain Generalization [14.643490853965385]
Distribution shift (DS) occurs when a dataset at test time differs from the dataset at training time.
We introduce a modular neural network layer consisting of Gated Domain Units (GDUs) that learn a representation for each latent elementary distribution.
During inference, a weighted ensemble of learning machines can be created by comparing new observations with the representations of each elementary distribution.
arXiv Detail & Related papers (2022-06-24T18:12:38Z) - An Unsupervised Domain Adaptive Approach for Multimodal 2D Object
Detection in Adverse Weather Conditions [5.217255784808035]
We propose an unsupervised domain adaptation framework to bridge the domain gap between source and target domains.
We use a data augmentation scheme that simulates weather distortions to add domain confusion and prevent overfitting on the source data.
Experiments performed on the DENSE dataset show that our method can substantially alleviate the domain gap.
arXiv Detail & Related papers (2022-03-07T18:10:40Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
We design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module.
By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.
arXiv Detail & Related papers (2022-01-06T05:43:01Z) - Open Domain Generalization with Domain-Augmented Meta-Learning [83.59952915761141]
We study a novel and practical problem of Open Domain Generalization (OpenDG)
We propose a Domain-Augmented Meta-Learning framework to learn open-domain generalizable representations.
Experiment results on various multi-domain datasets demonstrate that the proposed Domain-Augmented Meta-Learning (DAML) outperforms prior methods for unseen domain recognition.
arXiv Detail & Related papers (2021-04-08T09:12:24Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z) - Mind the Gap: Enlarging the Domain Gap in Open Set Domain Adaptation [65.38975706997088]
Open set domain adaptation (OSDA) assumes the presence of unknown classes in the target domain.
We show that existing state-of-the-art methods suffer a considerable performance drop in the presence of larger domain gaps.
We propose a novel framework to specifically address the larger domain gaps.
arXiv Detail & Related papers (2020-03-08T14:20:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.