A Learned Index for Exact Similarity Search in Metric Spaces
- URL: http://arxiv.org/abs/2204.10028v1
- Date: Thu, 21 Apr 2022 11:24:55 GMT
- Title: A Learned Index for Exact Similarity Search in Metric Spaces
- Authors: Yao Tian, Tingyun Yan, Xi Zhao, Kai Huang, Xiaofang Zhou
- Abstract summary: LIMS is proposed to use data clustering and pivot-based data transformation techniques to build learned indexes.
Machine learning models are developed to approximate the position of each data record on the disk.
Extensive experiments on real-world and synthetic datasets demonstrate the superiority of LIMS compared with traditional indexes.
- Score: 25.330353637669386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Indexing is an effective way to support efficient query processing in large
databases. Recently the concept of learned index has been explored actively to
replace or supplement traditional index structures with machine learning models
to reduce storage and search costs. However, accurate and efficient similarity
query processing in high-dimensional metric spaces remains to be an open
challenge. In this paper, a novel indexing approach called LIMS is proposed to
use data clustering and pivot-based data transformation techniques to build
learned indexes for efficient similarity query processing in metric spaces. The
underlying data is partitioned into clusters such that each cluster follows a
relatively uniform data distribution. Data redistribution is achieved by
utilizing a small number of pivots for each cluster. Similar data are mapped
into compact regions and the mapped values are totally ordinal. Machine
learning models are developed to approximate the position of each data record
on the disk. Efficient algorithms are designed for processing range queries and
nearest neighbor queries based on LIMS, and for index maintenance with dynamic
updates. Extensive experiments on real-world and synthetic datasets demonstrate
the superiority of LIMS compared with traditional indexes and state-of-the-art
learned indexes.
Related papers
- Adaptive Retrieval and Scalable Indexing for k-NN Search with Cross-Encoders [77.84801537608651]
Cross-encoder (CE) models which compute similarity by jointly encoding a query-item pair perform better than embedding-based models (dual-encoders) at estimating query-item relevance.
We propose a sparse-matrix factorization based method that efficiently computes latent query and item embeddings to approximate CE scores and performs k-NN search with the approximate CE similarity.
arXiv Detail & Related papers (2024-05-06T17:14:34Z) - Semi-Parametric Retrieval via Binary Token Index [71.78109794895065]
Semi-parametric Vocabulary Disentangled Retrieval (SVDR) is a novel semi-parametric retrieval framework.
It supports two types of indexes: an embedding-based index for high effectiveness, akin to existing neural retrieval methods; and a binary token index that allows for quick and cost-effective setup, resembling traditional term-based retrieval.
It achieves a 3% higher top-1 retrieval accuracy compared to the dense retriever DPR when using an embedding-based index and a 9% higher top-1 accuracy compared to BM25 when using a binary token index.
arXiv Detail & Related papers (2024-05-03T08:34:13Z) - WISK: A Workload-aware Learned Index for Spatial Keyword Queries [46.96314606580924]
We propose WISK, a learned index for spatial keyword queries.
We show that WISK achieves up to 8x speedup in querying time with comparable storage overhead.
arXiv Detail & Related papers (2023-02-28T03:45:25Z) - End-to-End Learning to Index and Search in Large Output Spaces [95.16066833532396]
Extreme multi-label classification (XMC) is a popular framework for solving real-world problems.
In this paper, we propose a novel method which relaxes the tree-based index to a specialized weighted graph-based index.
ELIAS achieves state-of-the-art performance on several large-scale extreme classification benchmarks with millions of labels.
arXiv Detail & Related papers (2022-10-16T01:34:17Z) - A Pluggable Learned Index Method via Sampling and Gap Insertion [48.900186573181735]
Database indexes facilitate data retrieval and benefit broad applications in real-world systems.
Recently, a new family of index, named learned index, is proposed to learn hidden yet useful data distribution.
We study two general and pluggable techniques to enhance the learning efficiency and learning effectiveness for learned indexes.
arXiv Detail & Related papers (2021-01-04T07:17:23Z) - The Case for Learned Spatial Indexes [62.88514422115702]
We use techniques proposed from a state-of-the art learned multi-dimensional index structure (namely, Flood) to answer spatial range queries.
We show that (i) machine learned search within a partition is faster by 11.79% to 39.51% than binary search when using filtering on one dimension.
We also refine using machine learned indexes is 1.23x to 1.83x times faster than closest competitor which filters on two dimensions.
arXiv Detail & Related papers (2020-08-24T12:09:55Z) - Learning from Data to Speed-up Sorted Table Search Procedures:
Methodology and Practical Guidelines [0.0]
We study to what extend Machine Learning Techniques can contribute to obtain such a speed-up.
We characterize the scenarios in which those latter can be profitably used with respect to the former, accounting for both CPU and GPU computing.
Indeed, we formalize an Algorithmic Paradigm of Learned Dichotomic Sorted Table Search procedures that naturally complements the Learned one proposed here and that characterizes most of the known Sorted Table Search Procedures as having a "learning phase" that approximates Simple Linear Regression.
arXiv Detail & Related papers (2020-07-20T16:26:54Z) - COAX: Correlation-Aware Indexing on Multidimensional Data with Soft
Functional Dependencies [3.670422696827525]
We present COAX, a learned index for multidimensional data that learns the correlations between attributes of the dataset.
We show experimentally that by predicting correlated attributes in the data, we can improve the query execution time and reduce the memory overhead of the index.
arXiv Detail & Related papers (2020-06-29T21:22:15Z) - Tsunami: A Learned Multi-dimensional Index for Correlated Data and
Skewed Workloads [29.223401893397714]
We introduce Tsunami, which achieves up to 6X faster query performance and up to 8X smaller index size than existing learned multi-dimensional indexes.
arXiv Detail & Related papers (2020-06-23T19:25:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.