Social Media Sentiment Analysis for Cryptocurrency Market Prediction
- URL: http://arxiv.org/abs/2204.10185v1
- Date: Tue, 19 Apr 2022 03:27:29 GMT
- Title: Social Media Sentiment Analysis for Cryptocurrency Market Prediction
- Authors: Ali Raheman, Anton Kolonin, Igors Fridkins, Ikram Ansari, Mukul
Vishwas
- Abstract summary: We study how the different sentiment metrics are correlated with the price movements of Bitcoin.
One of the models outperforms more than 20 other public ones.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we explore the usability of different natural language
processing models for the sentiment analysis of social media applied to
financial market prediction, using the cryptocurrency domain as a reference. We
study how the different sentiment metrics are correlated with the price
movements of Bitcoin. For this purpose, we explore different methods to
calculate the sentiment metrics from a text finding most of them not very
accurate for this prediction task. We find that one of the models outperforms
more than 20 other public ones and makes it possible to fine-tune it
efficiently given its interpretable nature. Thus we confirm that interpretable
artificial intelligence and natural language processing methods might be more
valuable practically than non-explainable and non-interpretable ones. In the
end, we analyse potential causal connections between the different sentiment
metrics and the price movements.
Related papers
- You Shall Know a Tool by the Traces it Leaves: The Predictability of Sentiment Analysis Tools [74.98850427240464]
We show that sentiment analysis tools disagree on the same dataset.
We show that the sentiment tool used for sentiment annotation can even be predicted from its outcome.
arXiv Detail & Related papers (2024-10-18T17:27:38Z) - Using Sentiment and Technical Analysis to Predict Bitcoin with Machine Learning [1.3053649021965603]
This work represents a preliminary study on the importance of sentiment metrics in cryptocurrency forecasting.
We present a novel approach for predicting Bitcoin price by combining the Fear & Greedy Index, a measure of market sentiment, Technical Analysis indicators, and the potential of Machine Learning algorithms.
arXiv Detail & Related papers (2024-10-18T15:13:07Z) - Modeling Emotional Trajectories in Written Stories Utilizing Transformers and Weakly-Supervised Learning [47.02027575768659]
We introduce continuous valence and arousal labels for an existing dataset of children's stories originally annotated with discrete emotion categories.
For predicting the thus obtained emotionality signals, we fine-tune a DeBERTa model and improve upon this baseline via a weakly supervised learning approach.
A detailed analysis shows the extent to which the results vary depending on factors such as the author, the individual story, or the section within the story.
arXiv Detail & Related papers (2024-06-04T12:17:16Z) - Framing in the Presence of Supporting Data: A Case Study in U.S. Economic News [43.51164834482535]
We argue that there are newsworthy topics where objective measures exist in the form of supporting data.
We propose a computational framework to analyze editorial choices in this setup.
arXiv Detail & Related papers (2024-02-22T02:07:21Z) - Interplay between Cryptocurrency Transactions and Online Financial
Forums [41.94295877935867]
This study focuses on the study of the interplay between these cryptocurrency forums and fluctuations in cryptocurrency values.
It shows that the activity of Bitcointalk forum keeps a direct relationship with the trend in the values of BTC.
The experiment highlights that forum data can explain specific events in the financial field.
arXiv Detail & Related papers (2023-11-27T16:25:28Z) - Deep Learning and NLP in Cryptocurrency Forecasting: Integrating Financial, Blockchain, and Social Media Data [3.6390165502400875]
We introduce novel approaches to cryptocurrency price forecasting, leveraging Machine Learning (ML) and Natural Language Processing (NLP) techniques.
By analysing news and social media content, we assess the impact of public sentiment on cryptocurrency markets.
arXiv Detail & Related papers (2023-11-23T16:14:44Z) - A Word is Worth A Thousand Dollars: Adversarial Attack on Tweets Fools
Stock Prediction [100.9772316028191]
In this paper, we experiment with a variety of adversarial attack configurations to fool three stock prediction victim models.
Our results show that the proposed attack method can achieve consistent success rates and cause significant monetary loss in trading simulation.
arXiv Detail & Related papers (2022-05-01T05:12:22Z) - LSTM Based Sentiment Analysis for Cryptocurrency Prediction [11.811501670389935]
This research is directed to predicting the volatile price movement of cryptocurrency by analyzing the sentiment in social media.
We propose a method to identify the sentiment of the Chinese social media posts from the most popular Chinese social media platform Sina-Weibo.
We develop the pipeline to capture Weibo posts, describe the creation of the crypto-specific sentiment dictionary, and propose a long short-term memory (LSTM) based recurrent neural network.
arXiv Detail & Related papers (2021-03-27T04:08:37Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
We have explored the relationship between sentiment extracted from financial news and tweets and FTSE100 movements.
The sentiment captured from news headlines could be used as a signal to predict market returns; the same does not apply for volatility.
We developed an accurate classifier for the prediction of market volatility in response to the arrival of new information.
arXiv Detail & Related papers (2020-12-10T01:15:48Z) - Real-Time Prediction of BITCOIN Price using Machine Learning Techniques
and Public Sentiment Analysis [0.0]
The objective of this paper is to determine the predictable price direction of Bitcoin in USD by machine learning techniques and sentiment analysis.
Twitter and Reddit have attracted a great deal of attention from researchers to study public sentiment.
We have applied sentiment analysis and supervised machine learning principles to the extracted tweets from Twitter and Reddit posts.
arXiv Detail & Related papers (2020-06-18T15:40:11Z) - Ascertaining price formation in cryptocurrency markets with DeepLearning [8.413339060443878]
This paper is inspired by the recent success of using deep learning for stock market prediction.
We analyze and present the characteristics of the cryptocurrency market in a high-frequency setting.
We achieve a consistent $78%$ accuracy on the prediction of the mid-price movement on live exchange rate of Bitcoins vs US dollars.
arXiv Detail & Related papers (2020-02-09T20:23:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.