論文の概要: Multimodal Hate Speech Detection from Bengali Memes and Texts
- arxiv url: http://arxiv.org/abs/2204.10196v1
- Date: Tue, 19 Apr 2022 11:15:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-22 12:37:23.357655
- Title: Multimodal Hate Speech Detection from Bengali Memes and Texts
- Title(参考訳): ベンガル語ミームとテキストからのマルチモーダルヘイト音声検出
- Authors: Md. Rezaul Karim and Sumon Kanti Dey and Tanhim Islam and Bharathi
Raja Chakravarthi
- Abstract要約: 本稿では,マルチモーダルなベンガルミームとテキストからのヘイトスピーチ検出について述べる。
我々は、ヘイトスピーチ検出のためのテキスト情報と視覚情報を分析するために、複数のニューラルネットワークを訓練する。
本研究は,ベンガル語におけるヘイトスピーチ検出にはミームが適度に有用であることが示唆する。
- 参考スコア(独自算出の注目度): 0.6709991492637819
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Numerous works have been proposed to employ machine learning (ML) and deep
learning (DL) techniques to utilize textual data from social media for
anti-social behavior analysis such as cyberbullying, fake news propagation, and
hate speech mainly for highly resourced languages like English. However,
despite having a lot of diversity and millions of native speakers, some
languages such as Bengali are under-resourced, which is due to a lack of
computational resources for natural language processing (NLP). Like English,
Bengali social media content also includes images along with texts (e.g.,
multimodal contents are posted by embedding short texts into images on
Facebook), only the textual data is not enough to judge them (e.g., to
determine they are hate speech). In those cases, images might give extra
context to properly judge. This paper is about hate speech detection from
multimodal Bengali memes and texts. We prepared the only multimodal hate speech
detection dataset1 for a kind of problem for Bengali. We train several neural
architectures (i.e., neural networks like Bi-LSTM/Conv-LSTM with word
embeddings, EfficientNet + transformer architectures such as monolingual Bangla
BERT, multilingual BERT-cased/uncased, and XLM-RoBERTa) jointly analyze textual
and visual information for hate speech detection. The Conv-LSTM and XLM-RoBERTa
models performed best for texts, yielding F1 scores of 0.78 and 0.82,
respectively. As of memes, ResNet152 and DenseNet201 models yield F1 scores of
0.78 and 0.7, respectively. The multimodal fusion of mBERT-uncased +
EfficientNet-B1 performed the best, yielding an F1 score of 0.80. Our study
suggests that memes are moderately useful for hate speech detection in Bengali,
but none of the multimodal models outperform unimodal models analyzing only
textual data.
- Abstract(参考訳): 機械学習(ML)とディープラーニング(DL)技術を用いて、ソーシャルメディアからのテキストデータをサイバーいじめ、フェイクニュースの伝播、ヘイトスピーチなどの反社会的行動分析に活用する研究が数多く提案されている。
しかし、多くの多様性と何百万ものネイティブスピーカーがあるにもかかわらず、ベンガル語のような一部の言語は、自然言語処理(NLP)の計算資源が不足しているため、リソースが不足している。
英語と同様に、ベンガルのソーシャルメディアコンテンツは、テキストと共に画像を含む(例えば、Facebook上の画像に短いテキストを埋め込むことで、マルチモーダルコンテンツが投稿される)。
その場合、画像は適切な判断に余分な文脈を与えるかもしれない。
本稿では,マルチモーダルベンガルミームとテキストからのヘイトスピーチ検出について述べる。
ベンガルに対する問題として,マルチモーダルヘイトスピーチ検出データセット1を作成した。
我々は、単語埋め込みを伴うBi-LSTM/Conv-LSTM、モノリンガルBangla BERT、マルチリンガルBERT-cased/uncased、XLM-RoBERTaなどのトランスフォーマーアーキテクチャなどのニューラルネットワークを、ヘイトスピーチ検出のためのテキストと視覚情報を共同で分析する。
Conv-LSTM と XLM-RoBERTa はそれぞれ 0.78 と 0.82 のスコアを得た。
ミームでは、ResNet152とDenseNet201はそれぞれ0.78と0.7のスコアを得る。
mBERT-uncased + EfficientNet-B1のマルチモーダル融合が最も良く、F1スコアは0.80である。
ベンガルにおけるヘイトスピーチ検出にはミームが適度に有用であることが示唆されたが、マルチモーダルモデルはテキストデータのみを分析するユニモーダルモデルを上回るものではない。
関連論文リスト
- mOSCAR: A Large-scale Multilingual and Multimodal Document-level Corpus [52.83121058429025]
ウェブからクロールされた最初の大規模多言語およびマルチモーダル文書コーパスであるmOSCARを紹介する。
163の言語、315万のドキュメント、214Bトークン、1.2Bイメージをカバーしている。
さまざまなマルチリンガル画像テキストタスクとベンチマークで、数ショットの学習パフォーマンスが大幅に向上している。
論文 参考訳(メタデータ) (2024-06-13T00:13:32Z) - OmniCorpus: A Unified Multimodal Corpus of 10 Billion-Level Images Interleaved with Text [112.60163342249682]
我々は100億規模の画像テキストインターリーブデータセットであるOmniCorpusを紹介する。
私たちのデータセットは、優れたデータ品質を維持しながら、15倍のスケールを持っています。
これが将来のマルチモーダルモデル研究に確かなデータ基盤を提供することを期待しています。
論文 参考訳(メタデータ) (2024-06-12T17:01:04Z) - Hate Speech and Offensive Content Detection in Indo-Aryan Languages: A
Battle of LSTM and Transformers [0.0]
我々はベンガル語、アサメセ語、ボド語、シンハラ語、グジャラート語の5つの異なる言語でヘイトスピーチの分類を比較した。
Bert Base Multilingual Casedは、ベンガル語で0.67027得点、アサメ語で0.70525得点を達成した。
シンハラではXLM-RはF1スコア0.83493で際立っているが、グジャラティではF1スコア0.76601で照らされたカスタムLSTMベースのモデルである。
論文 参考訳(メタデータ) (2023-12-09T20:24:00Z) - Large Multilingual Models Pivot Zero-Shot Multimodal Learning across Languages [76.35234803589412]
MPMは、英語以外の言語で大規模なマルチモーダルモデルを訓練するための効果的な訓練パラダイムである。
画像・テキスト・テキスト・画像生成における大規模なマルチモーダルモデルVisCPMを構築し,中国語の最先端(オープンソース)性能を実現する。
論文 参考訳(メタデータ) (2023-08-23T09:55:41Z) - BeAts: Bengali Speech Acts Recognition using Multimodal Attention Fusion [0.0]
我々は,音声のwav2vec2.0とテキスト翻訳のMarianMTの2つのモデルを組み合わせて,音声行動を予測する手法を開発した。
また,我々のモデルであるBeAts(underlinetextbfBe$ngali)がMultimodal $underlinetextbfAt$tention Fu$underlinetextbfs$ionを用いて音声認識を行うことを示す。
論文 参考訳(メタデータ) (2023-06-05T08:12:17Z) - Bangla hate speech detection on social media using attention-based
recurrent neural network [2.1349209400003932]
この記事では、Facebookページ上のユーザのBengaliコメントを分類するために、NLPで人気のツールであるエンコーダデコーダベースの機械学習モデルを提案する。
7つの異なるカテゴリーのヘイトスピーチからなる7,425のBengaliコメントのデータセットを使用して、モデルをトレーニングし、評価した。
3つのエンコーダデコーダアルゴリズムのうち、アテンションベースのデコーダが最も精度が高い(77%)。
論文 参考訳(メタデータ) (2022-03-31T03:31:53Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - Exploiting BERT For Multimodal Target SentimentClassification Through
Input Space Translation [75.82110684355979]
オブジェクト認識変換器を用いて入力空間内の画像を変換する2ストリームモデルを提案する。
次に、翻訳を利用して、言語モデルに多モーダル情報を提供する補助文を構築する。
2つのマルチモーダルTwitterデータセットで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-08-03T18:02:38Z) - DeepHateExplainer: Explainable Hate Speech Detection in Under-resourced
Bengali Language [1.2246649738388389]
ベンガル語からのヘイトスピーチ検出のための説明可能なアプローチを提案する。
我々のアプローチでは、ベンガルのテキストは、政治的、個人的、地政学的、宗教的憎悪に分類する前に、最初に包括的に前処理される。
機械学習(線形および木ベースのモデル)およびディープニューラルネットワーク(CNN、Bi-LSTM、Conv-LSTMなどの単語埋め込み)に対する評価は、それぞれ政治的、個人的、地政学的、宗教的憎悪に対して、F1スコアは84%、90%、88%、88%である。
論文 参考訳(メタデータ) (2020-12-28T16:46:03Z) - Classification Benchmarks for Under-resourced Bengali Language based on
Multichannel Convolutional-LSTM Network [3.0168410626760034]
われわれはBengFastTextという2億5000万記事をベースに、これまでで最大のベンガル語埋め込みモデルを構築している。
単語の埋め込みを多チャンネル畳み込み-LSTMネットワークに組み込んで、さまざまなタイプのヘイトスピーチ、文書分類、感情分析を予測する。
論文 参考訳(メタデータ) (2020-04-11T22:17:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。