Heterogeneous rarity patterns drive price dynamics in NFT collections
- URL: http://arxiv.org/abs/2204.10243v4
- Date: Wed, 31 Aug 2022 11:08:34 GMT
- Title: Heterogeneous rarity patterns drive price dynamics in NFT collections
- Authors: Amin Mekacher, Alberto Bracci, Matthieu Nadini, Mauro Martino, Laura
Alessandretti, Luca Maria Aiello, Andrea Baronchelli
- Abstract summary: We quantify Non Fungible Token (NFT) rarity and investigate how it impacts market behaviour.
We analyse a dataset of 3.7M transactions collected between January 2018 and June 2022 involving 1.4M NFTs distributed across 410 collections.
- Score: 0.24626113631507887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We quantify Non Fungible Token (NFT) rarity and investigate how it impacts
market behaviour by analysing a dataset of 3.7M transactions collected between
January 2018 and June 2022, involving 1.4M NFTs distributed across 410
collections. First, we consider the rarity of an NFT based on the set of
human-readable attributes it possesses and show that most collections present
heterogeneous rarity patterns, with few rare NFTs and a large number of more
common ones. Then, we analyze market performance and show that, on average,
rarer NFTs: (i) sell for higher prices, (ii) are traded less frequently, (iii)
guarantee higher returns on investment (ROIs), and (iv) are less risky, i.e.,
less prone to yield negative returns. We anticipate that these findings will be
of interest to researchers as well as NFT creators, collectors, and traders.
Related papers
- MT-Eval: A Multi-Turn Capabilities Evaluation Benchmark for Large
Language Models [70.92847554971065]
We introduce MT-Eval, a comprehensive benchmark designed to evaluate multi-turn conversational abilities.
By analyzing human-LLM conversations, we categorize interaction patterns into four types: recollection, expansion, refinement, and follow-up.
Our evaluation of 11 well-known LLMs shows that while closed-source models generally surpass open-source ones, certain open-source models exceed GPT-3.5-Turbo in specific tasks.
arXiv Detail & Related papers (2024-01-30T04:50:28Z) - The Dark Side of NFTs: A Large-Scale Empirical Study of Wash Trading [28.20696034160891]
We analyze 8,717,031 transfer events and 3,830,141 sale events from 2,701,883 NFTs.
We identify three types of NFT wash trading and propose identification algorithms.
We also provide insights from six aspects, i.e., marketplace design, profitability, NFT project design, payment token, user behavior, and NFT ecosystem.
arXiv Detail & Related papers (2023-12-19T19:29:24Z) - NFTVis: Visual Analysis of NFT Performance [12.491701063977825]
A non-fungible token (NFT) is a data unit stored on the blockchain.
Current rarity models have flaws and are sometimes not convincing.
It is difficult to take comprehensive consideration and analyze NFT performance efficiently.
arXiv Detail & Related papers (2023-06-05T09:02:48Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
We present a groundbreaking framework for financial market analysis.
This approach is the first to jointly model investor expectations and automatically mine latent stock relationships.
Our model consistently achieves an annual return exceeding 10%.
arXiv Detail & Related papers (2023-06-01T01:36:51Z) - Bubble or Not: Measurements, Analyses, and Findings on the Ethereum
ERC721 and ERC1155 Non-fungible Token Ecosystem [22.010657813215413]
The market capitalization of NFT reached 21.5 billion USD in 2021, almost 200 times of all previous transactions.
The rapid decline in NFT market fever in the second quarter of 2022 casts doubts on the ostensible boom in the NFT market.
By collecting data from the whole blockchain, we construct three graphs, namely NFT create graph, NFT transfer graph, and NFT hold graph, to characterize the NFT traders.
We propose new indicators to quantify the activeness and value of NFT and propose an algorithm that combines indicators and graph analyses to find bubble NFTs.
arXiv Detail & Related papers (2023-01-05T10:17:57Z) - A Game of NFTs: Characterizing NFT Wash Trading in the Ethereum Blockchain [53.8917088220974]
The Non-Fungible Token (NFT) market experienced explosive growth in 2021, with a monthly trade volume reaching $6 billion in January 2022.
Concerns have emerged about possible wash trading, a form of market manipulation in which one party repeatedly trades an NFT to inflate its volume artificially.
We find that wash trading affects 5.66% of all NFT collections, with a total artificial volume of $3,406,110,774.
arXiv Detail & Related papers (2022-12-02T15:03:35Z) - You can't pick your neighbors, or can you? When and how to rely on
retrieval in the $k$NN-LM [65.74934004876914]
Retrieval-enhanced language models (LMs) condition their predictions on text retrieved from large external datastores.
One such approach, the $k$NN-LM, interpolates any existing LM's predictions with the output of a $k$-nearest neighbors model.
We empirically measure the effectiveness of our approach on two English language modeling datasets.
arXiv Detail & Related papers (2022-10-28T02:57:40Z) - The Fungibility of Non-Fungible Tokens: A Quantitative Analysis of
ERC-721 Metadata [9.812718050900918]
Non-Fungible Tokens (NFTs) have until recently been traded on a highly lucrative and speculative market.
An emergence of misconceptions, along with a sustained market downtime, are calling the value of NFTs into question.
This project describes three properties that any valuable NFT should possess.
arXiv Detail & Related papers (2022-09-29T02:33:31Z) - Mapping the NFT revolution: market trends, trade networks and visual
features [0.25861007846258416]
Non Fungible Tokens (NFTs) are digital assets that represent objects like art, collectible, and in-game items.
We analyse data concerning 6.1 million trades of 4.7 million NFTs between June 23, 2017 and April 27, 2021.
arXiv Detail & Related papers (2021-06-01T17:25:32Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
We have explored the relationship between sentiment extracted from financial news and tweets and FTSE100 movements.
The sentiment captured from news headlines could be used as a signal to predict market returns; the same does not apply for volatility.
We developed an accurate classifier for the prediction of market volatility in response to the arrival of new information.
arXiv Detail & Related papers (2020-12-10T01:15:48Z) - Modeling Personalized Item Frequency Information for Next-basket
Recommendation [63.94555438898309]
Next-basket recommendation (NBR) is prevalent in e-commerce and retail industry.
We argue that existing RNNs cannot directly capture item frequency information in the recommendation scenario.
We propose a simple item frequency based k-nearest neighbors (kNN) method to directly utilize these critical signals.
arXiv Detail & Related papers (2020-05-31T16:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.