The Dark Side of NFTs: A Large-Scale Empirical Study of Wash Trading
- URL: http://arxiv.org/abs/2312.12544v3
- Date: Mon, 22 Jul 2024 09:08:04 GMT
- Title: The Dark Side of NFTs: A Large-Scale Empirical Study of Wash Trading
- Authors: Shijian Chen, Jiachi Chen, Jiangshan Yu, Xiapu Luo, Yanlin Wang,
- Abstract summary: We analyze 8,717,031 transfer events and 3,830,141 sale events from 2,701,883 NFTs.
We identify three types of NFT wash trading and propose identification algorithms.
We also provide insights from six aspects, i.e., marketplace design, profitability, NFT project design, payment token, user behavior, and NFT ecosystem.
- Score: 28.20696034160891
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: NFTs (Non-Fungible Tokens) have seen significant growth since they first captured public attention in 2021. However, the NFT market is plagued by fake transactions and economic bubbles, e.g., NFT wash trading. Wash trading typically refers to a transaction involving the same person or two colluding individuals, and has become a major threat to the NFT ecosystem. Previous studies only detect NFT wash trading from the financial aspect, while the real-world wash trading cases are much more complicated (e.g., not aiming at inflating the market value). There is still a lack of multi-dimension analysis to better understand NFT wash trading. Therefore, we present the most comprehensive study of NFT wash trading, analyzing 8,717,031 transfer events and 3,830,141 sale events from 2,701,883 NFTs. We first optimize the dataset collected via the OpenSea API. Next, we identify three types of NFT wash trading and propose identification algorithms. Our experimental results reveal 824 transfer events and 5,330 sale events (accounting for a total of \$8,857,070.41) and 370 address pairs related to NFT wash trading behaviors, causing a minimum loss of \$3,965,247.13. Furthermore, we provide insights from six aspects, i.e., marketplace design, profitability, NFT project design, payment token, user behavior, and NFT ecosystem.
Related papers
- Characterizing the Solana NFT Ecosystem [0.8225825738565354]
We conduct the first systematic research on the characteristics of Solana NFTs from two perspectives.
Investigating users' economic activity and NFT owner information reveals that the top users in Solana NFT are skewed toward a higher distribution of purchases.
We employ the Local Outlier Factor algorithm to conduct a wash trading audit on 2,175 popular Solana NFTs.
arXiv Detail & Related papers (2024-03-16T10:16:49Z) - Parameter-Efficient Orthogonal Finetuning via Butterfly Factorization [102.92240148504774]
We study a principled finetuning paradigm -- Orthogonal Finetuning (OFT) -- for downstream task adaptation.
Despite demonstrating good generalizability, OFT still uses a fairly large number of trainable parameters.
We apply this parameterization to OFT, creating a novel parameter-efficient finetuning method, called Orthogonal Butterfly (BOFT)
arXiv Detail & Related papers (2023-11-10T18:59:54Z) - Abnormal Trading Detection in the NFT Market [1.7205106391379026]
The total transaction volume on OpenSea, the largest NFT marketplace, reached 34.7 billion dollars in February 2023.
The NFT market is mostly unregulated and there are significant concerns about money laundering, fraud and wash trading.
The lack of industry-wide regulations, and the fact that amateur traders and retail investors comprise a significant fraction of the NFT market, make this market particularly vulnerable to fraudulent activities.
arXiv Detail & Related papers (2023-05-25T15:12:14Z) - Bubble or Not: Measurements, Analyses, and Findings on the Ethereum
ERC721 and ERC1155 Non-fungible Token Ecosystem [22.010657813215413]
The market capitalization of NFT reached 21.5 billion USD in 2021, almost 200 times of all previous transactions.
The rapid decline in NFT market fever in the second quarter of 2022 casts doubts on the ostensible boom in the NFT market.
By collecting data from the whole blockchain, we construct three graphs, namely NFT create graph, NFT transfer graph, and NFT hold graph, to characterize the NFT traders.
We propose new indicators to quantify the activeness and value of NFT and propose an algorithm that combines indicators and graph analyses to find bubble NFTs.
arXiv Detail & Related papers (2023-01-05T10:17:57Z) - A Game of NFTs: Characterizing NFT Wash Trading in the Ethereum Blockchain [53.8917088220974]
The Non-Fungible Token (NFT) market experienced explosive growth in 2021, with a monthly trade volume reaching $6 billion in January 2022.
Concerns have emerged about possible wash trading, a form of market manipulation in which one party repeatedly trades an NFT to inflate its volume artificially.
We find that wash trading affects 5.66% of all NFT collections, with a total artificial volume of $3,406,110,774.
arXiv Detail & Related papers (2022-12-02T15:03:35Z) - Fast-iTPN: Integrally Pre-Trained Transformer Pyramid Network with Token
Migration [138.24994198567794]
iTPN is born with two elaborated designs: 1) The first pre-trained feature pyramid upon vision transformer (ViT)
Fast-iTPN can accelerate the inference procedure by up to 70%, with negligible performance loss.
arXiv Detail & Related papers (2022-11-23T06:56:12Z) - Quantum computational finance: martingale asset pricing for incomplete
markets [69.73491758935712]
We show that a variety of quantum techniques can be applied to the pricing problem in finance.
We discuss three different methods that are distinct from previous works.
arXiv Detail & Related papers (2022-09-19T09:22:01Z) - Probably Something: A Multi-Layer Taxonomy of Non-Fungible Tokens [62.997667081978825]
Non-Fungible Tokens (NFTs) are hyped and increasingly marketed as essential building blocks of the Metaverse.
This paper aims to establish a fundamental and comprehensive understanding of NFTs by identifying and structuring common characteristics within a taxonomy.
arXiv Detail & Related papers (2022-08-29T18:00:30Z) - Mapping the NFT revolution: market trends, trade networks and visual
features [0.25861007846258416]
Non Fungible Tokens (NFTs) are digital assets that represent objects like art, collectible, and in-game items.
We analyse data concerning 6.1 million trades of 4.7 million NFTs between June 23, 2017 and April 27, 2021.
arXiv Detail & Related papers (2021-06-01T17:25:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.