Unsupervised Human Action Recognition with Skeletal Graph Laplacian and
Self-Supervised Viewpoints Invariance
- URL: http://arxiv.org/abs/2204.10312v1
- Date: Thu, 21 Apr 2022 17:47:42 GMT
- Title: Unsupervised Human Action Recognition with Skeletal Graph Laplacian and
Self-Supervised Viewpoints Invariance
- Authors: Giancarlo Paoletti, Jacopo Cavazza, Cigdem Beyan, Alessio Del Bue
- Abstract summary: We propose a new architecture with a convolutional autoencoder that uses graph Laplacian regularization to model the skeletal geometry across the temporal dynamics of actions.
Our approach is robust towards viewpoint variations by including a self-supervised gradient reverse layer that ensures generalization across camera views.
- Score: 20.748083855677816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel end-to-end method for the problem of
skeleton-based unsupervised human action recognition. We propose a new
architecture with a convolutional autoencoder that uses graph Laplacian
regularization to model the skeletal geometry across the temporal dynamics of
actions. Our approach is robust towards viewpoint variations by including a
self-supervised gradient reverse layer that ensures generalization across
camera views. The proposed method is validated on NTU-60 and NTU-120
large-scale datasets in which it outperforms all prior unsupervised
skeleton-based approaches on the cross-subject, cross-view, and cross-setup
protocols. Although unsupervised, our learnable representation allows our
method even to surpass a few supervised skeleton-based action recognition
methods. The code is available in:
www.github.com/IIT-PAVIS/UHAR_Skeletal_Laplacian
Related papers
- Skeleton2vec: A Self-supervised Learning Framework with Contextualized
Target Representations for Skeleton Sequence [56.092059713922744]
We show that using high-level contextualized features as prediction targets can achieve superior performance.
Specifically, we propose Skeleton2vec, a simple and efficient self-supervised 3D action representation learning framework.
Our proposed Skeleton2vec outperforms previous methods and achieves state-of-the-art results.
arXiv Detail & Related papers (2024-01-01T12:08:35Z) - Exploring Self-Supervised Skeleton-Based Human Action Recognition under Occlusions [40.322770236718775]
We propose a method to integrate self-supervised skeleton-based action recognition methods into autonomous robotic systems.
We first pre-train using occluded skeleton sequences, then use k-means clustering (KMeans) on sequence embeddings to group semantically similar samples.
Imputing incomplete skeleton sequences to create relatively complete sequences provides significant benefits to existing skeleton-based self-supervised methods.
arXiv Detail & Related papers (2023-09-21T12:51:11Z) - SkeletonMAE: Graph-based Masked Autoencoder for Skeleton Sequence
Pre-training [110.55093254677638]
We propose an efficient skeleton sequence learning framework, named Skeleton Sequence Learning (SSL)
In this paper, we build an asymmetric graph-based encoder-decoder pre-training architecture named SkeletonMAE.
Our SSL generalizes well across different datasets and outperforms the state-of-the-art self-supervised skeleton-based action recognition methods.
arXiv Detail & Related papers (2023-07-17T13:33:11Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Joint-bone Fusion Graph Convolutional Network for Semi-supervised
Skeleton Action Recognition [65.78703941973183]
We propose a novel correlation-driven joint-bone fusion graph convolutional network (CD-JBF-GCN) as an encoder and use a pose prediction head as a decoder.
Specifically, the CD-JBF-GC can explore the motion transmission between the joint stream and the bone stream.
The pose prediction based auto-encoder in the self-supervised training stage allows the network to learn motion representation from unlabeled data.
arXiv Detail & Related papers (2022-02-08T16:03:15Z) - UNIK: A Unified Framework for Real-world Skeleton-based Action
Recognition [11.81043814295441]
We introduce UNIK, a novel skeleton-based action recognition method that is able to generalize across datasets.
To study the cross-domain generalizability of action recognition in real-world videos, we re-evaluate state-of-the-art approaches as well as the proposed UNIK.
Results show that the proposed UNIK, with pre-training on Posetics, generalizes well and outperforms state-of-the-art when transferred onto four target action classification datasets.
arXiv Detail & Related papers (2021-07-19T02:00:28Z) - Revisiting Skeleton-based Action Recognition [107.08112310075114]
PoseC3D is a new approach to skeleton-based action recognition, which relies on a 3D heatmap instead stack a graph sequence as the base representation of human skeletons.
On four challenging datasets, PoseC3D consistently obtains superior performance, when used alone on skeletons and in combination with the RGB modality.
arXiv Detail & Related papers (2021-04-28T06:32:17Z) - JOLO-GCN: Mining Joint-Centered Light-Weight Information for
Skeleton-Based Action Recognition [47.47099206295254]
We propose a novel framework for employing human pose skeleton and joint-centered light-weight information jointly in a two-stream graph convolutional network.
Compared to the pure skeleton-based baseline, this hybrid scheme effectively boosts performance, while keeping the computational and memory overheads low.
arXiv Detail & Related papers (2020-11-16T08:39:22Z) - A Self-Supervised Gait Encoding Approach with Locality-Awareness for 3D
Skeleton Based Person Re-Identification [65.18004601366066]
Person re-identification (Re-ID) via gait features within 3D skeleton sequences is a newly-emerging topic with several advantages.
This paper proposes a self-supervised gait encoding approach that can leverage unlabeled skeleton data to learn gait representations for person Re-ID.
arXiv Detail & Related papers (2020-09-05T16:06:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.