The New Agronomists: Language Models are Experts in Crop Management
- URL: http://arxiv.org/abs/2403.19839v1
- Date: Thu, 28 Mar 2024 21:20:27 GMT
- Title: The New Agronomists: Language Models are Experts in Crop Management
- Authors: Jing Wu, Zhixin Lai, Suiyao Chen, Ran Tao, Pan Zhao, Naira Hovakimyan,
- Abstract summary: This paper introduces a more advanced intelligent crop management system.
We utilize deep RL, specifically a deep Q-network, to train management policies that process numerous state variables from the simulator as observations.
A novel aspect of our approach is the conversion of these state variables into more informative language, facilitating the language model's capacity to understand states and explore optimal management practices.
- Score: 11.239822736512929
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Crop management plays a crucial role in determining crop yield, economic profitability, and environmental sustainability. Despite the availability of management guidelines, optimizing these practices remains a complex and multifaceted challenge. In response, previous studies have explored using reinforcement learning with crop simulators, typically employing simple neural-network-based reinforcement learning (RL) agents. Building on this foundation, this paper introduces a more advanced intelligent crop management system. This system uniquely combines RL, a language model (LM), and crop simulations facilitated by the Decision Support System for Agrotechnology Transfer (DSSAT). We utilize deep RL, specifically a deep Q-network, to train management policies that process numerous state variables from the simulator as observations. A novel aspect of our approach is the conversion of these state variables into more informative language, facilitating the language model's capacity to understand states and explore optimal management practices. The empirical results reveal that the LM exhibits superior learning capabilities. Through simulation experiments with maize crops in Florida (US) and Zaragoza (Spain), the LM not only achieves state-of-the-art performance under various evaluation metrics but also demonstrates a remarkable improvement of over 49\% in economic profit, coupled with reduced environmental impact when compared to baseline methods. Our code is available at \url{https://github.com/jingwu6/LM_AG}.
Related papers
- CROPS: A Deployable Crop Management System Over All Possible State Availabilities [11.831002170207547]
This paper introduces a deployable textbfCRop Management system textbfOver all textbfPossible textbfState availabilities (CROPS)
arXiv Detail & Related papers (2024-11-09T02:06:09Z) - A Comparative Study of Deep Reinforcement Learning for Crop Production Management [13.123171643387668]
Reinforcement learning (RL) has emerged as a promising tool for developing adaptive crop management policies.
In the gym-DSSAT crop model environment, one of the most widely used simulators for crop management, proximal policy optimization (PPO) and deep Q-networks (DQN) have shown promising results.
In this study, we evaluated PPO and DQN against static baseline policies across three different RL tasks, fertilization, irrigation, and mixed management, provided by the gym-DSSAT environment.
arXiv Detail & Related papers (2024-11-06T18:35:51Z) - LMGT: Optimizing Exploration-Exploitation Balance in Reinforcement Learning through Language Model Guided Trade-offs [27.014415210732103]
We introduce textbfLanguage textbfModel textbfGuided textbfTrade-offs (i.e., textbfLMGT), a novel, sample-efficient framework for Reinforcement Learning.
arXiv Detail & Related papers (2024-09-07T07:40:43Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Supervised Pretraining Can Learn In-Context Reinforcement Learning [96.62869749926415]
In this paper, we study the in-context learning capabilities of transformers in decision-making problems.
We introduce and study Decision-Pretrained Transformer (DPT), a supervised pretraining method where the transformer predicts an optimal action.
We find that the pretrained transformer can be used to solve a range of RL problems in-context, exhibiting both exploration online and conservatism offline.
arXiv Detail & Related papers (2023-06-26T17:58:50Z) - Optimizing Crop Management with Reinforcement Learning and Imitation
Learning [9.69704937572711]
We present an intelligent crop management system which optimize the N fertilization and irrigation simultaneously via reinforcement learning (RL), imitation learning (IL), and crop simulations.
We conduct experiments on a case study using maize in Florida and compare trained policies with a maize management guideline in simulations.
Our trained policies under both full and partial observations achieve better outcomes, resulting in a higher profit or a similar profit with a smaller environmental impact.
arXiv Detail & Related papers (2022-09-20T20:48:52Z) - Can Offline Reinforcement Learning Help Natural Language Understanding? [31.788133426611587]
We consider investigating the potential connection between offline reinforcement learning (RL) and language modeling (LM)
RL and LM are similar in predicting the next states based on the current and previous states, which rely on both local and long-range dependency across states.
Experimental results show that our RL pre-trained models can give close performance compared with the models using the LM training objective.
arXiv Detail & Related papers (2022-09-15T02:55:10Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) learns successful equilibrium policies after a few interactions with the environment.
We demonstrate our approach experimentally on an autonomous driving simulation benchmark.
arXiv Detail & Related papers (2022-03-14T17:24:03Z) - Mask-based Latent Reconstruction for Reinforcement Learning [58.43247393611453]
Mask-based Latent Reconstruction (MLR) is proposed to predict the complete state representations in the latent space from the observations with spatially and temporally masked pixels.
Extensive experiments show that our MLR significantly improves the sample efficiency in deep reinforcement learning.
arXiv Detail & Related papers (2022-01-28T13:07:11Z) - Exploratory State Representation Learning [63.942632088208505]
We propose a new approach called XSRL (eXploratory State Representation Learning) to solve the problems of exploration and SRL in parallel.
On one hand, it jointly learns compact state representations and a state transition estimator which is used to remove unexploitable information from the representations.
On the other hand, it continuously trains an inverse model, and adds to the prediction error of this model a $k$-step learning progress bonus to form the objective of a discovery policy.
arXiv Detail & Related papers (2021-09-28T10:11:07Z) - RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real [74.45688231140689]
We introduce the RL-scene consistency loss for image translation, which ensures that the translation operation is invariant with respect to the Q-values associated with the image.
We obtain RL-CycleGAN, a new approach for simulation-to-real-world transfer for reinforcement learning.
arXiv Detail & Related papers (2020-06-16T08:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.