Attentions Help CNNs See Better: Attention-based Hybrid Image Quality
Assessment Network
- URL: http://arxiv.org/abs/2204.10485v1
- Date: Fri, 22 Apr 2022 03:59:18 GMT
- Title: Attentions Help CNNs See Better: Attention-based Hybrid Image Quality
Assessment Network
- Authors: Shanshan Lao, Yuan Gong, Shuwei Shi, Sidi Yang, Tianhe Wu, Jiahao
Wang, Weihao Xia, Yujiu Yang
- Abstract summary: Image quality assessment (IQA) algorithm aims to quantify the human perception of image quality.
There is a performance drop when assessing distortion images generated by generative adversarial network (GAN) with seemingly realistic texture.
We propose an Attention-based Hybrid Image Quality Assessment Network (AHIQ) to deal with the challenge and get better performance on the GAN-based IQA task.
- Score: 20.835800149919145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image quality assessment (IQA) algorithm aims to quantify the human
perception of image quality. Unfortunately, there is a performance drop when
assessing the distortion images generated by generative adversarial network
(GAN) with seemingly realistic texture. In this work, we conjecture that this
maladaptation lies in the backbone of IQA models, where patch-level prediction
methods use independent image patches as input to calculate their scores
separately, but lack spatial relationship modeling among image patches.
Therefore, we propose an Attention-based Hybrid Image Quality Assessment
Network (AHIQ) to deal with the challenge and get better performance on the
GAN-based IQA task. Firstly, we adopt a two-branch architecture, including a
vision transformer (ViT) branch and a convolutional neural network (CNN) branch
for feature extraction. The hybrid architecture combines interaction
information among image patches captured by ViT and local texture details from
CNN. To make the features from shallow CNN more focused on the visually salient
region, a deformable convolution is applied with the help of semantic
information from the ViT branch. Finally, we use a patch-wise score prediction
module to obtain the final score. The experiments show that our model
outperforms the state-of-the-art methods on four standard IQA datasets and AHIQ
ranked first on the Full Reference (FR) track of the NTIRE 2022 Perceptual
Image Quality Assessment Challenge.
Related papers
- DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
Blind image quality assessment (IQA) in the wild presents significant challenges.
Given the difficulty in collecting large-scale training data, leveraging limited data to develop a model with strong generalization remains an open problem.
Motivated by the robust image perception capabilities of pre-trained text-to-image (T2I) diffusion models, we propose a novel IQA method, diffusion priors-based IQA.
arXiv Detail & Related papers (2024-05-30T12:32:35Z) - Cross-IQA: Unsupervised Learning for Image Quality Assessment [3.2287957986061038]
We propose a no-reference image quality assessment (NR-IQA) method termed Cross-IQA based on vision transformer(ViT) model.
The proposed Cross-IQA method can learn image quality features from unlabeled image data.
Experimental results show that Cross-IQA can achieve state-of-the-art performance in assessing the low-frequency degradation information.
arXiv Detail & Related papers (2024-05-07T13:35:51Z) - Large Multi-modality Model Assisted AI-Generated Image Quality Assessment [53.182136445844904]
We introduce a large Multi-modality model Assisted AI-Generated Image Quality Assessment (MA-AGIQA) model.
It uses semantically informed guidance to sense semantic information and extract semantic vectors through carefully designed text prompts.
It achieves state-of-the-art performance, and demonstrates its superior generalization capabilities on assessing the quality of AI-generated images.
arXiv Detail & Related papers (2024-04-27T02:40:36Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - Transformer-based No-Reference Image Quality Assessment via Supervised
Contrastive Learning [36.695247860715874]
We propose a novel Contrastive Learning (SCL) and Transformer-based NR-IQA model SaTQA.
We first train a model on a large-scale synthetic dataset by SCL to extract degradation features of images with various distortion types and levels.
To further extract distortion information from images, we propose a backbone network incorporating the Multi-Stream Block (MSB) by combining the CNN inductive bias and Transformer long-term dependence modeling capability.
Experimental results on seven standard IQA datasets show that SaTQA outperforms the state-of-the-art methods for both synthetic and authentic datasets
arXiv Detail & Related papers (2023-12-12T06:01:41Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet pre-trained deep neural networks (DNNs) show notable transferability for building effective image quality assessment (IQA) models.
We develop a novel full-reference IQA (FR-IQA) model based exclusively on pre-trained DNN features.
We conduct comprehensive experiments to demonstrate the superiority of the proposed quality model on five standard IQA datasets.
arXiv Detail & Related papers (2022-11-09T14:57:27Z) - MANIQA: Multi-dimension Attention Network for No-Reference Image Quality
Assessment [18.637040004248796]
No-Reference Image Quality Assessment (NR-IQA) aims to assess the perceptual quality of images in accordance with human subjective perception.
Existing NR-IQA methods are far from meeting the needs of predicting accurate quality scores on GAN-based distortion images.
We propose Multi-dimension Attention Network for no-reference Image Quality Assessment (MANIQA) to improve the performance on GAN-based distortion.
arXiv Detail & Related papers (2022-04-19T15:56:43Z) - Learning Transformer Features for Image Quality Assessment [53.51379676690971]
We propose a unified IQA framework that utilizes CNN backbone and transformer encoder to extract features.
The proposed framework is compatible with both FR and NR modes and allows for a joint training scheme.
arXiv Detail & Related papers (2021-12-01T13:23:00Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Region-Adaptive Deformable Network for Image Quality Assessment [16.03642709194366]
In image restoration and enhancement tasks, images generated by generative adversarial networks (GAN) can achieve better visual performance than traditional CNN-generated images.
We propose the reference-oriented deformable convolution, which can improve the performance of an IQA network on GAN-based distortion.
Experiment results on the NTIRE 2021 Perceptual Image Quality Assessment Challenge dataset show the superior performance of RADN.
arXiv Detail & Related papers (2021-04-23T13:47:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.