Cross-IQA: Unsupervised Learning for Image Quality Assessment
- URL: http://arxiv.org/abs/2405.04311v1
- Date: Tue, 7 May 2024 13:35:51 GMT
- Title: Cross-IQA: Unsupervised Learning for Image Quality Assessment
- Authors: Zhen Zhang,
- Abstract summary: We propose a no-reference image quality assessment (NR-IQA) method termed Cross-IQA based on vision transformer(ViT) model.
The proposed Cross-IQA method can learn image quality features from unlabeled image data.
Experimental results show that Cross-IQA can achieve state-of-the-art performance in assessing the low-frequency degradation information.
- Score: 3.2287957986061038
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic perception of image quality is a challenging problem that impacts billions of Internet and social media users daily. To advance research in this field, we propose a no-reference image quality assessment (NR-IQA) method termed Cross-IQA based on vision transformer(ViT) model. The proposed Cross-IQA method can learn image quality features from unlabeled image data. We construct the pretext task of synthesized image reconstruction to unsupervised extract the image quality information based ViT block. The pretrained encoder of Cross-IQA is used to fine-tune a linear regression model for score prediction. Experimental results show that Cross-IQA can achieve state-of-the-art performance in assessing the low-frequency degradation information (e.g., color change, blurring, etc.) of images compared with the classical full-reference IQA and NR-IQA under the same datasets.
Related papers
- DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
Blind image quality assessment (IQA) in the wild presents significant challenges.
Given the difficulty in collecting large-scale training data, leveraging limited data to develop a model with strong generalization remains an open problem.
Motivated by the robust image perception capabilities of pre-trained text-to-image (T2I) diffusion models, we propose a novel IQA method, diffusion priors-based IQA.
arXiv Detail & Related papers (2024-05-30T12:32:35Z) - Reference-Free Image Quality Metric for Degradation and Reconstruction Artifacts [2.5282283486446753]
We develop a reference-free quality evaluation network, dubbed "Quality Factor (QF) Predictor"
Our QF Predictor is a lightweight, fully convolutional network comprising seven layers.
It receives JPEG compressed image patch with a random QF as input, is trained to accurately predict the corresponding QF.
arXiv Detail & Related papers (2024-05-01T22:28:18Z) - Large Multi-modality Model Assisted AI-Generated Image Quality Assessment [53.182136445844904]
We introduce a large Multi-modality model Assisted AI-Generated Image Quality Assessment (MA-AGIQA) model.
It uses semantically informed guidance to sense semantic information and extract semantic vectors through carefully designed text prompts.
It achieves state-of-the-art performance, and demonstrates its superior generalization capabilities on assessing the quality of AI-generated images.
arXiv Detail & Related papers (2024-04-27T02:40:36Z) - Transformer-based No-Reference Image Quality Assessment via Supervised
Contrastive Learning [36.695247860715874]
We propose a novel Contrastive Learning (SCL) and Transformer-based NR-IQA model SaTQA.
We first train a model on a large-scale synthetic dataset by SCL to extract degradation features of images with various distortion types and levels.
To further extract distortion information from images, we propose a backbone network incorporating the Multi-Stream Block (MSB) by combining the CNN inductive bias and Transformer long-term dependence modeling capability.
Experimental results on seven standard IQA datasets show that SaTQA outperforms the state-of-the-art methods for both synthetic and authentic datasets
arXiv Detail & Related papers (2023-12-12T06:01:41Z) - Re-IQA: Unsupervised Learning for Image Quality Assessment in the Wild [38.197794061203055]
We propose a Mixture of Experts approach to train two separate encoders to learn high-level content and low-level image quality features in an unsupervised setting.
We deploy the complementary low and high-level image representations obtained from the Re-IQA framework to train a linear regression model.
Our method achieves state-of-the-art performance on multiple large-scale image quality assessment databases.
arXiv Detail & Related papers (2023-04-02T05:06:51Z) - Attentions Help CNNs See Better: Attention-based Hybrid Image Quality
Assessment Network [20.835800149919145]
Image quality assessment (IQA) algorithm aims to quantify the human perception of image quality.
There is a performance drop when assessing distortion images generated by generative adversarial network (GAN) with seemingly realistic texture.
We propose an Attention-based Hybrid Image Quality Assessment Network (AHIQ) to deal with the challenge and get better performance on the GAN-based IQA task.
arXiv Detail & Related papers (2022-04-22T03:59:18Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Continual Learning for Blind Image Quality Assessment [80.55119990128419]
Blind image quality assessment (BIQA) models fail to continually adapt to subpopulation shift.
Recent work suggests training BIQA methods on the combination of all available human-rated IQA datasets.
We formulate continual learning for BIQA, where a model learns continually from a stream of IQA datasets.
arXiv Detail & Related papers (2021-02-19T03:07:01Z) - No-Reference Image Quality Assessment via Feature Fusion and Multi-Task
Learning [29.19484863898778]
Blind or no-reference image quality assessment (NR-IQA) is a fundamental, unsolved, and yet challenging problem.
We propose a simple and yet effective general-purpose no-reference (NR) image quality assessment framework based on multi-task learning.
Our model employs distortion types as well as subjective human scores to predict image quality.
arXiv Detail & Related papers (2020-06-06T05:04:10Z) - Uncertainty-Aware Blind Image Quality Assessment in the Laboratory and
Wild [98.48284827503409]
We develop a textitunified BIQA model and an approach of training it for both synthetic and realistic distortions.
We employ the fidelity loss to optimize a deep neural network for BIQA over a large number of such image pairs.
Experiments on six IQA databases show the promise of the learned method in blindly assessing image quality in the laboratory and wild.
arXiv Detail & Related papers (2020-05-28T13:35:23Z) - MetaIQA: Deep Meta-learning for No-Reference Image Quality Assessment [73.55944459902041]
This paper presents a no-reference IQA metric based on deep meta-learning.
We first collect a number of NR-IQA tasks for different distortions.
Then meta-learning is adopted to learn the prior knowledge shared by diversified distortions.
Extensive experiments demonstrate that the proposed metric outperforms the state-of-the-arts by a large margin.
arXiv Detail & Related papers (2020-04-11T23:36:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.