Detecting quantumness in uniform precessions
- URL: http://arxiv.org/abs/2204.10498v3
- Date: Mon, 26 Sep 2022 16:10:05 GMT
- Title: Detecting quantumness in uniform precessions
- Authors: Lin Htoo Zaw, Clive Cenxin Aw, Zakarya Lasmar, and Valerio Scarani
- Abstract summary: We present a family of protocols that detect the nonclassicality of suitable states of a single quantum system.
We then apply the protocols to finite-dimensional spins that undergo uniform precession in real space.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Building on work by Tsirelson, we present a family of protocols that detect
the nonclassicality of suitable states of a single quantum system, under the
sole assumption that the measured dynamical observable undergoes a uniform
precession. The case of the harmonic oscillator was anticipated in the work by
Tsirelson, which we extend. We then apply the protocols to finite-dimensional
spins that undergo uniform precession in real space and find a gap between the
classical and the quantum expectations for every $j\geq \frac{3}{2}$ (excluding
$j=2$).
Related papers
- An even-parity precession protocol for detecting nonclassicality and entanglement [0.0]
We introduce an even-parity precession protocol that can detect nonclassicality of some quantum states.
Unlike other nonclassicality tests, simultaneous or sequential measurements are not required.
This work also closes a long-standing gap by showing the possibility of detecting the Greenberger--Horne--Zeilinger entanglement of an even number of qubits.
arXiv Detail & Related papers (2024-05-28T08:52:55Z) - Double or nothing: a Kolmogorov extension theorem for multitime (bi)probabilities in quantum mechanics [0.0]
We prove a generalization of the Kolmogorov extension theorem that applies to families of complex-valued bi-probability distributions.
We discuss the relation of our results with the quantum comb formalism.
arXiv Detail & Related papers (2024-02-02T08:40:03Z) - A theory-independent bound saturated by quantum mechanics [0.0]
Tsirelson's original inequality for the precession protocol serves as a monopartite test of quantumness.
We consider this inequality for measurements with finitely many outcomes in a theory-independent manner.
arXiv Detail & Related papers (2024-01-29T13:23:55Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Coherence revival and metrological advantage for moving Unruh-DeWitt
detector [1.926161664993893]
We investigate the quantum coherence extraction for two accelerating Unruh-DeWitt detectors coupling to a scalar background in $3+1$ Minkowski spacetime.
We find that quantum coherence as a sort of nonclassical correlation can be generated through the Markovian evolution of the detectors system just like quantum entanglement.
arXiv Detail & Related papers (2021-11-02T03:57:32Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - The modified logarithmic Sobolev inequality for quantum spin systems:
classical and commuting nearest neighbour interactions [2.148535041822524]
We prove a strong exponential convergence in relative entropy of the system to equilibrium under a condition of spatial mixing.
We show that our notion of spatial mixing is a consequence of the recent quantum generalization of Dobrushin and Shlosman's complete analyticity of the free-energy at equilibrium.
Our results have wide-ranging applications in quantum information.
arXiv Detail & Related papers (2020-09-24T16:54:06Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.