Quantum Semi-Supervised Kernel Learning
- URL: http://arxiv.org/abs/2204.10700v1
- Date: Fri, 22 Apr 2022 13:39:55 GMT
- Title: Quantum Semi-Supervised Kernel Learning
- Authors: Seyran Saeedi, Aliakbar Panahi, Tom Arodz
- Abstract summary: We present a quantum machine learning algorithm for training Semi-Supervised Kernel Support Vector Machines.
We show that it maintains the same speedup as the fully-supervised Quantum LS-SVM.
- Score: 4.726777092009554
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing leverages quantum effects to build algorithms that are
faster then their classical variants. In machine learning, for a given model
architecture, the speed of training the model is typically determined by the
size of the training dataset. Thus, quantum machine learning methods have the
potential to facilitate learning using extremely large datasets. While the
availability of data for training machine learning models is steadily
increasing, oftentimes it is much easier to collect feature vectors that to
obtain the corresponding labels. One of the approaches for addressing this
issue is to use semi-supervised learning, which leverages not only the labeled
samples, but also unlabeled feature vectors. Here, we present a quantum machine
learning algorithm for training Semi-Supervised Kernel Support Vector Machines.
The algorithm uses recent advances in quantum sample-based Hamiltonian
simulation to extend the existing Quantum LS-SVM algorithm to handle the
semi-supervised term in the loss. Through a theoretical study of the
algorithm's computational complexity, we show that it maintains the same
speedup as the fully-supervised Quantum LS-SVM.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum-Assisted Simulation: A Framework for Developing Machine Learning Models in Quantum Computing [0.0]
We investigate the history of quantum computing, examine existing QML algorithms, and present a simplified procedure for setting up simulations of QML algorithms.
We conduct simulations on a dataset using both traditional machine learning and quantum machine learning approaches.
arXiv Detail & Related papers (2023-11-17T07:33:42Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Kernel Matrix Completion for Offline Quantum-Enhanced Machine Learning [0.09786690381850353]
We show quantum kernel matrices can be extended to incorporate new data using a classical (chordal-graph-based) matrix completion algorithm.
The minimal sample complexity needed for perfect completion is dependent on matrix rank.
On a real-world, industrially-relevant data set, the completion error behaves gracefully even when the minimal sample complexity is not reached.
arXiv Detail & Related papers (2021-12-15T19:44:39Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - Quantum Machine Learning For Classical Data [0.0]
We study the intersection of quantum computing and supervised machine learning algorithms.
In particular, we investigate what extent quantum computers can be used to accelerate supervised machine learning algorithms.
arXiv Detail & Related papers (2021-05-08T12:11:44Z) - Quantum Support Vector Machines for Continuum Suppression in B Meson
Decays [0.27342795342528275]
We investigate the effect of different quantum encoding circuits, the process that transforms classical data into a quantum state, on the final classification performance.
We show an encoding approach that achieves an average Area Under Receiver Operating Characteristic Curve (AUC) of 0.848 determined using quantum circuit simulations.
Using a reduced version of the dataset we then ran the algorithm on the IBM Quantum ibmq_casablanca device achieving an average AUC of 0.703.
arXiv Detail & Related papers (2021-03-23T02:09:05Z) - QEML (Quantum Enhanced Machine Learning): Using Quantum Computing to
Enhance ML Classifiers and Feature Spaces [0.49841205356595936]
Machine learning and quantum computing are causing a paradigm shift in the performance and behavior of certain algorithms.
This paper first understands the mathematical intuition for the implementation of quantum feature space.
We build a noisy variational quantum circuit KNN which mimics the classification methods of a traditional KNN.
arXiv Detail & Related papers (2020-02-22T04:14:32Z) - Statistical Limits of Supervised Quantum Learning [90.0289160657379]
We show that if the bound on the accuracy is taken into account, quantum machine learning algorithms for supervised learning cannot achieve polylogarithmic runtimes in the input dimension.
We conclude that, when no further assumptions on the problem are made, quantum machine learning algorithms for supervised learning can have at most speedups over efficient classical algorithms.
arXiv Detail & Related papers (2020-01-28T17:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.