TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework
- URL: http://arxiv.org/abs/2301.05451v1
- Date: Fri, 13 Jan 2023 09:35:05 GMT
- Title: TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework
- Authors: Yaocheng Chen, Xingyao Wu, Chung-Yun Kuo, Yuxuan Du, and Dacheng Tao
- Abstract summary: TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
- Score: 59.07246314484875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: TeD-Q is an open-source software framework for quantum machine learning,
variational quantum algorithm (VQA), and simulation of quantum computing. It
seamlessly integrates classical machine learning libraries with quantum
simulators, giving users the ability to leverage the power of classical machine
learning while training quantum machine learning models. TeD-Q supports
auto-differentiation that provides backpropagation, parameters shift, and
finite difference methods to obtain gradients. With tensor contraction,
simulation of quantum circuits with large number of qubits is possible. TeD-Q
also provides a graphical mode in which the quantum circuit and the training
progress can be visualized in real-time.
Related papers
- Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
We introduce the Quantum-Train(QT) framework, a novel approach that integrates quantum computing with machine learning algorithms.
QT achieves remarkable results by employing a quantum neural network alongside a classical mapping model.
arXiv Detail & Related papers (2024-05-18T14:35:57Z) - Multi-GPU-Enabled Hybrid Quantum-Classical Workflow in Quantum-HPC Middleware: Applications in Quantum Simulations [1.9922905420195367]
This study introduces an innovative distribution-aware Quantum-Classical-Quantum architecture.
It integrates cutting-edge quantum software framework works with high-performance classical computing resources.
It addresses challenges in quantum simulation for materials and condensed matter physics.
arXiv Detail & Related papers (2024-03-09T07:38:45Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Quantum Machine Learning for Software Supply Chain Attacks: How Far Can
We Go? [5.655023007686363]
This paper analyzes speed up performance of QC when applied to machine learning algorithms, known as Quantum Machine Learning (QML)
Due to limitations of real quantum computers, the QML methods were implemented on open-source quantum simulators such as Qiskit and IBM Quantum.
Interestingly, the experimental results differ to the speed up promises of QC by demonstrating higher computational time and lower accuracy in comparison to the classical approaches for SSC attacks.
arXiv Detail & Related papers (2022-04-04T21:16:06Z) - QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks [71.14713348443465]
We introduce a trainable quantum tensor network (QTN) for quantum embedding on a variational quantum circuit (VQC)
QTN enables an end-to-end parametric model pipeline, namely QTN-VQC, from the generation of quantum embedding to the output measurement.
Our experiments on the MNIST dataset demonstrate the advantages of QTN for quantum embedding over other quantum embedding approaches.
arXiv Detail & Related papers (2021-10-06T14:44:51Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - MISTIQS: An open-source software for performing quantum dynamics
simulations on quantum computers [1.3192560874022086]
MISTIQS delivers end-to-end functionality for simulating the quantum many-body dynamics of systems governed by time-dependent Heisenberg Hamiltonians.
It provides high-level programming functionality for generating intermediate representations of quantum circuits.
arXiv Detail & Related papers (2021-01-05T22:37:01Z) - TensorFlow Quantum: A Software Framework for Quantum Machine Learning [36.75544801185366]
We introduce Quantum (TFQ), an open source library for the rapid prototyping of hybrid quantum-classical models for classical or quantum data.
We demonstrate how one can apply TFQ to tackle advanced quantum learning tasks including meta-learning, layerwise learning, Hamiltonian learning, sampling thermal states, variational quantum eigensolvers, classification of quantum phase transitions, generative adversarial networks, and reinforcement learning.
arXiv Detail & Related papers (2020-03-06T01:31:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.