論文の概要: Memory Bounds for Continual Learning
- arxiv url: http://arxiv.org/abs/2204.10830v1
- Date: Fri, 22 Apr 2022 17:19:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-25 12:39:32.808570
- Title: Memory Bounds for Continual Learning
- Title(参考訳): 連続学習のためのメモリ境界
- Authors: Xi Chen, Christos Papadimitriou and Binghui Peng
- Abstract要約: 継続的学習(Continuous learning)、すなわち生涯学習(Lifelong learning)は、機械学習にとって、現在非常に困難な課題である。
我々は,不適切な学習者であっても,$k$で線形に成長するメモリを必要とすることを示すために,コミュニケーションの複雑さを新たに活用する。
- 参考スコア(独自算出の注目度): 13.734474418577188
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual learning, or lifelong learning, is a formidable current challenge
to machine learning. It requires the learner to solve a sequence of $k$
different learning tasks, one after the other, while retaining its aptitude for
earlier tasks; the continual learner should scale better than the obvious
solution of developing and maintaining a separate learner for each of the $k$
tasks. We embark on a complexity-theoretic study of continual learning in the
PAC framework. We make novel uses of communication complexity to establish that
any continual learner, even an improper one, needs memory that grows linearly
with $k$, strongly suggesting that the problem is intractable. When
logarithmically many passes over the learning tasks are allowed, we provide an
algorithm based on multiplicative weights update whose memory requirement
scales well; we also establish that improper learning is necessary for such
performance. We conjecture that these results may lead to new promising
approaches to continual learning.
- Abstract(参考訳): 継続的学習(continentual learning、生涯学習)は、マシンラーニングの現在の課題のひとつです。
学習者は、1つ1つ1つずつ、1つ1つの異なる学習タスクを1つずつ解き、それ以前のタスクに対する適性を保ち続ける必要がある。
PACフレームワークにおける継続学習の複雑性理論的研究に着手する。
我々は,不適切な学習者であっても,$k$で線形に成長するメモリを必要とすることを示すために,コミュニケーションの複雑さを新たに活用する。
対数的に学習タスクに多くのパスが許容される場合、メモリ要求が十分にスケールする乗法重み付け更新に基づくアルゴリズムを提供する。
これらの結果は、継続学習に対する新しい有望なアプローチにつながる可能性があると推測する。
関連論文リスト
- Continual Learning of Numerous Tasks from Long-tail Distributions [17.706669222987273]
継続的な学習は、以前獲得した知識を維持しながら、新しいタスクを学習し、適応するモデルの開発に焦点を当てる。
既存の連続学習アルゴリズムは、通常、一定の大きさの少数のタスクを伴い、現実世界の学習シナリオを正確に表現しないことがある。
本稿では,従来のタスクから第2モーメントの重み付け平均を維持することで,アダムの状態を再利用する手法を提案する。
提案手法は,既存のほとんどの連続学習アルゴリズムと互換性があり,少ない計算量やメモリコストで忘れを効果的に削減できることを実証する。
論文 参考訳(メタデータ) (2024-04-03T13:56:33Z) - Multitask Learning with No Regret: from Improved Confidence Bounds to
Active Learning [79.07658065326592]
推定タスクの不確実性の定量化は、オンラインやアクティブな学習など、多くの下流アプリケーションにとって重要な課題である。
タスク間の類似性やタスクの特徴を学習者に提供できない場合、課題設定において新しいマルチタスク信頼区間を提供する。
本稿では,このパラメータを事前に知らないまま,このような改善された後悔を実現する新しいオンライン学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-03T13:08:09Z) - How Efficient Are Today's Continual Learning Algorithms? [31.120016345185217]
監視された継続学習では、ラベル付きデータのストリームからディープニューラルネットワーク(DNN)を更新する。
継続的学習の背景にある大きな動機の1つは、時間とともに成長するにつれてトレーニングデータセットをスクラッチからリトレーニングするのではなく、ネットワークを新しい情報で効率的に更新できることだ。
本稿では,近年のインクリメンタルなクラス学習手法について検討し,計算,メモリ,記憶の面では非常に非効率であることを示す。
論文 参考訳(メタデータ) (2023-03-29T18:52:10Z) - Teacher-student curriculum learning for reinforcement learning [1.7259824817932292]
強化学習(rl)は、シーケンシャルな意思決定問題に対する一般的なパラダイムである。
深部強化学習手法のサンプル非効率性は,実世界の問題に適用する際の重要な障害である。
そこで我々は,学生が選択した課題の解き方を学習している間に,生徒の課題を選択する教師を同時に訓練する学習環境を提案する。
論文 参考訳(メタデータ) (2022-10-31T14:45:39Z) - Reset-Free Reinforcement Learning via Multi-Task Learning: Learning
Dexterous Manipulation Behaviors without Human Intervention [67.1936055742498]
マルチタスク学習は、リセットフリーの学習スキームをはるかに複雑な問題に効果的にスケールできることを示す。
この研究は、人間の介入なしにRLを用いて現実世界での巧妙な操作行動を学ぶ能力を示す。
論文 参考訳(メタデータ) (2021-04-22T17:38:27Z) - Variable-Shot Adaptation for Online Meta-Learning [123.47725004094472]
従来のタスクから静的データにまたがるメタラーニングによって,少数の固定された例から新しいタスクを学習する問題について検討する。
メタラーニングは,従来の教師付き手法に比べて,ラベルの総数が少なく,累積性能も高いタスクセットを解く。
これらの結果から,メタラーニングは,一連の問題を継続的に学習し,改善する学習システムを構築する上で重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2020-12-14T18:05:24Z) - Continual Learning in Low-rank Orthogonal Subspaces [86.36417214618575]
連続学習(CL)では、学習者は一連のタスクに直面して次々に到着し、学習経験が終わるとすべてのタスクを覚えることが目的である。
CLの以前の技術は、タスク間の干渉を減らすためにエピソードメモリ、パラメータ正規化、ネットワーク構造を使用していたが、最終的には、全てのアプローチが共同ベクトル空間で異なるタスクを学習する。
干渉を最小限に抑えるために互いに直交する異なる(低ランクな)ベクトル部分空間でタスクを学習することを提案する。
論文 参考訳(メタデータ) (2020-10-22T12:07:43Z) - Bilevel Continual Learning [76.50127663309604]
BCL(Bilevel Continual Learning)という,継続的学習の新たな枠組みを提案する。
連続学習ベンチマーク実験では,多くの最先端手法と比較して,提案したBCLの有効性が示された。
論文 参考訳(メタデータ) (2020-07-30T16:00:23Z) - Curriculum Learning for Reinforcement Learning Domains: A Framework and
Survey [53.73359052511171]
強化学習(Reinforcement Learning, RL)は、エージェントが限られた環境フィードバックしか持たないシーケンシャルな意思決定タスクに対処するための一般的なパラダイムである。
本稿では、RLにおけるカリキュラム学習(CL)の枠組みを提案し、既存のCLメソッドを仮定、能力、目標の観点から調査・分類する。
論文 参考訳(メタデータ) (2020-03-10T20:41:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。