論文の概要: Local Gaussian process extrapolation for BART models with applications
to causal inference
- arxiv url: http://arxiv.org/abs/2204.10963v1
- Date: Sat, 23 Apr 2022 00:37:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-27 11:09:23.858605
- Title: Local Gaussian process extrapolation for BART models with applications
to causal inference
- Title(参考訳): BARTモデルに対する局所ガウス過程外挿法と因果推論への応用
- Authors: Meijiang Wang, Jingyu He, P. Richard Hahn
- Abstract要約: 本稿では, ガウス過程をBARTの葉ノードに移植し, 観測データの範囲外の点を予測するための新しい外挿法を提案する。
シミュレーション研究において、新しいアプローチはJackknife+のような一般的な代替手段よりも優れたパフォーマンスを誇っている。
- 参考スコア(独自算出の注目度): 0.7734726150561088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian additive regression trees (BART) is a semi-parametric regression
model offering state-of-the-art performance on out-of-sample prediction.
Despite this success, standard implementations of BART typically provide
inaccurate prediction and overly narrow prediction intervals at points outside
the range of the training data. This paper proposes a novel extrapolation
strategy that grafts Gaussian processes to the leaf nodes in BART for
predicting points outside the range of the observed data. The new method is
compared to standard BART implementations and recent frequentist
resampling-based methods for predictive inference. We apply the new approach to
a challenging problem from causal inference, wherein for some regions of
predictor space, only treated or untreated units are observed (but not both).
In simulations studies, the new approach boasts superior performance compared
to popular alternatives, such as Jackknife+.
- Abstract(参考訳): ベイズ加法回帰木(英: bayesian additive regression tree、bart)は、半パラメトリック回帰モデルである。
この成功にもかかわらず、BARTの標準実装は通常、トレーニングデータの範囲外において、不正確な予測と過度に狭い予測間隔を提供する。
本稿では, ガウス過程をBARTの葉ノードに移植し, 観測データの範囲外の点を予測するための新しい外挿法を提案する。
提案手法は,従来のBART実装と最近の予測推論のための頻繁な再サンプリング手法と比較される。
本稿では, 因果推論の難解な問題に新しいアプローチを適用し, 予測空間のいくつかの領域において, 処理単位または未処理単位のみが観測される(両方ではない)。
シミュレーション研究において、新しいアプローチはjackknife+のような一般的な代替品よりも優れた性能を誇っている。
関連論文リスト
- Bayesian Cramér-Rao Bound Estimation with Score-Based Models [3.4480437706804503]
ベイジアンクラム・ラオ境界(英語版)(英: Bayesian Cram'er-Rao bound, CRB)は、任意のベイジアン推定器の平均二乗誤差に対する下界を与える。
本研究は,スコアマッチングを用いたCRBのための新しいデータ駆動推定手法を提案する。
論文 参考訳(メタデータ) (2023-09-28T00:22:21Z) - Evaluating Graph Neural Networks for Link Prediction: Current Pitfalls
and New Benchmarking [66.83273589348758]
リンク予測は、グラフのエッジの一部のみに基づいて、目に見えないエッジが存在するかどうかを予測しようとする。
近年,この課題にグラフニューラルネットワーク(GNN)を活用すべく,一連の手法が導入されている。
これらの新しいモデルの有効性をよりよく評価するために、新しい多様なデータセットも作成されている。
論文 参考訳(メタデータ) (2023-06-18T01:58:59Z) - Fast post-process Bayesian inference with Variational Sparse Bayesian Quadrature [13.36200518068162]
本稿では,既存の目標密度評価から高速な後続近似を得る手段として,プロセス後ベイズ推定の枠組みを提案する。
この枠組みでは,ブラックボックスと潜在的ノイズの可能性のあるモデルに対して,プロセス後近似推定法である変分スパースベイズ近似(VSBQ)を導入する。
本手法は,計算神経科学による難解な合成シナリオと実世界の応用について検証する。
論文 参考訳(メタデータ) (2023-03-09T13:58:35Z) - Proposal Distribution Calibration for Few-Shot Object Detection [65.19808035019031]
few-shot object detection (FSOD)では、重度のサンプル不均衡を軽減するために、2段階の訓練パラダイムが広く採用されている。
残念ながら、極端なデータ不足は、提案の分布バイアスを増大させ、RoIヘッドが新しいクラスに進化するのを妨げます。
本稿では,RoIヘッドのローカライゼーションと分類能力を高めるために,単純かつ効果的な提案分布キャリブレーション(PDC)手法を提案する。
論文 参考訳(メタデータ) (2022-12-15T05:09:11Z) - Sample-Efficient Optimisation with Probabilistic Transformer Surrogates [66.98962321504085]
本稿では,ベイズ最適化における最先端確率変換器の適用可能性について検討する。
トレーニング手順と損失定義から生じる2つの欠点を観察し、ブラックボックス最適化のプロキシとして直接デプロイすることを妨げる。
1)非一様分散点を前処理するBO調整トレーニング,2)予測性能を向上させるために最適な定常点をフィルタする新しい近似後正則整定器トレードオフ精度と入力感度を導入する。
論文 参考訳(メタデータ) (2022-05-27T11:13:17Z) - Instance-Based Uncertainty Estimation for Gradient-Boosted Regression
Trees [13.109852233032395]
重み付き回帰木に対するインスタンスベース不確かさ推定法(Ibug)を提案する。
Ibugは、k-nearestトレーニングインスタンスを使用して予測に関する非パラメトリック分布を計算する。
Ibugは、以前の22のベンチマーク予測データセットと比べて、同様の、あるいはより優れたパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2022-05-23T15:53:27Z) - GP-BART: a novel Bayesian additive regression trees approach using
Gaussian processes [1.03590082373586]
GP-BARTモデル(GP-BART model)は、すべての木間の各終端ノードの予測にGP先行を仮定することで制限に対処するBARTの拡張である。
モデルの有効性は、シミュレーションおよび実世界のデータへの応用を通じて実証され、様々なシナリオにおける従来のモデリング手法のパフォーマンスを上回る。
論文 参考訳(メタデータ) (2022-04-05T11:18:44Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。