Learning by Erasing: Conditional Entropy based Transferable Out-Of-Distribution Detection
- URL: http://arxiv.org/abs/2204.11041v3
- Date: Wed, 27 Mar 2024 14:29:27 GMT
- Title: Learning by Erasing: Conditional Entropy based Transferable Out-Of-Distribution Detection
- Authors: Meng Xing, Zhiyong Feng, Yong Su, Changjae Oh,
- Abstract summary: Out-of-distribution (OOD) detection is essential to handle the distribution shifts between training and test scenarios.
Existing methods require retraining to capture the dataset-specific feature representation or data distribution.
We propose a deep generative models (DGM) based transferable OOD detection method, which is unnecessary to retrain on a new ID dataset.
- Score: 17.31471594748061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-distribution (OOD) detection is essential to handle the distribution shifts between training and test scenarios. For a new in-distribution (ID) dataset, existing methods require retraining to capture the dataset-specific feature representation or data distribution. In this paper, we propose a deep generative models (DGM) based transferable OOD detection method, which is unnecessary to retrain on a new ID dataset. We design an image erasing strategy to equip exclusive conditional entropy distribution for each ID dataset, which determines the discrepancy of DGM's posteriori ucertainty distribution on different ID datasets. Owing to the powerful representation capacity of convolutional neural networks, the proposed model trained on complex dataset can capture the above discrepancy between ID datasets without retraining and thus achieve transferable OOD detection. We validate the proposed method on five datasets and verity that ours achieves comparable performance to the state-of-the-art group based OOD detection methods that need to be retrained to deploy on new ID datasets. Our code is available at https://github.com/oOHCIOo/CETOOD.
Related papers
- Semantic or Covariate? A Study on the Intractable Case of Out-of-Distribution Detection [70.57120710151105]
We provide a more precise definition of the Semantic Space for the ID distribution.
We also define the "Tractable OOD" setting which ensures the distinguishability of OOD and ID distributions.
arXiv Detail & Related papers (2024-11-18T03:09:39Z) - Diffusion-based Layer-wise Semantic Reconstruction for Unsupervised Out-of-Distribution Detection [30.02748131967826]
Unsupervised out-of-distribution (OOD) detection aims to identify out-of-domain data by learning only from unlabeled In-Distribution (ID) training samples.
Current reconstruction-based methods provide a good alternative approach by measuring the reconstruction error between the input and its corresponding generative counterpart in the pixel/feature space.
We propose the diffusion-based layer-wise semantic reconstruction approach for unsupervised OOD detection.
arXiv Detail & Related papers (2024-11-16T04:54:07Z) - Contextualised Out-of-Distribution Detection using Pattern Identication [0.0]
CODE is an extension of existing work from the field of explainable AI.
It identifies class-specific recurring patterns to build a robust Out-of-Distribution (OoD) detection method.
arXiv Detail & Related papers (2023-10-24T07:55:09Z) - Interpretable Out-Of-Distribution Detection Using Pattern Identification [0.0]
Out-of-distribution (OoD) detection for data-based programs is a goal of paramount importance.
Common approaches in the literature tend to train detectors requiring inside-of-distribution (in-distribution, or IoD) and OoD validation samples.
We propose to use existing work from the field of explainable AI, namely the PARTICUL pattern identification algorithm, in order to build more interpretable and robust OoD detectors.
arXiv Detail & Related papers (2023-01-24T15:35:54Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - No Shifted Augmentations (NSA): compact distributions for robust
self-supervised Anomaly Detection [4.243926243206826]
Unsupervised Anomaly detection (AD) requires building a notion of normalcy, distinguishing in-distribution (ID) and out-of-distribution (OOD) data.
We investigate how the emph geometrical compactness of the ID feature distribution makes isolating and detecting outliers easier.
We propose novel architectural modifications to the self-supervised feature learning step, that enable such compact distributions for ID data to be learned.
arXiv Detail & Related papers (2022-03-19T15:55:32Z) - Data-SUITE: Data-centric identification of in-distribution incongruous
examples [81.21462458089142]
Data-SUITE is a data-centric framework to identify incongruous regions of in-distribution (ID) data.
We empirically validate Data-SUITE's performance and coverage guarantees.
arXiv Detail & Related papers (2022-02-17T18:58:31Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - IID-GAN: an IID Sampling Perspective for Regularizing Mode Collapse [82.49564071049366]
generative adversarial networks (GANs) still suffer from mode collapse.
We analyze and seek to regularize this issue with an independent and identically distributed (IID) sampling perspective.
We propose a new loss to encourage the closeness between inverse samples of real data and the Gaussian source in latent space to regularize the generation to be IID from the target distribution.
arXiv Detail & Related papers (2021-06-01T15:20:34Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.