Diffusion-based Layer-wise Semantic Reconstruction for Unsupervised Out-of-Distribution Detection
- URL: http://arxiv.org/abs/2411.10701v1
- Date: Sat, 16 Nov 2024 04:54:07 GMT
- Title: Diffusion-based Layer-wise Semantic Reconstruction for Unsupervised Out-of-Distribution Detection
- Authors: Ying Yang, De Cheng, Chaowei Fang, Yubiao Wang, Changzhe Jiao, Lechao Cheng, Nannan Wang,
- Abstract summary: Unsupervised out-of-distribution (OOD) detection aims to identify out-of-domain data by learning only from unlabeled In-Distribution (ID) training samples.
Current reconstruction-based methods provide a good alternative approach by measuring the reconstruction error between the input and its corresponding generative counterpart in the pixel/feature space.
We propose the diffusion-based layer-wise semantic reconstruction approach for unsupervised OOD detection.
- Score: 30.02748131967826
- License:
- Abstract: Unsupervised out-of-distribution (OOD) detection aims to identify out-of-domain data by learning only from unlabeled In-Distribution (ID) training samples, which is crucial for developing a safe real-world machine learning system. Current reconstruction-based methods provide a good alternative approach by measuring the reconstruction error between the input and its corresponding generative counterpart in the pixel/feature space. However, such generative methods face a key dilemma: improving the reconstruction power of the generative model while keeping a compact representation of the ID data. To address this issue, we propose the diffusion-based layer-wise semantic reconstruction approach for unsupervised OOD detection. The innovation of our approach is that we leverage the diffusion model's intrinsic data reconstruction ability to distinguish ID samples from OOD samples in the latent feature space. Moreover, to set up a comprehensive and discriminative feature representation, we devise a multi-layer semantic feature extraction strategy. By distorting the extracted features with Gaussian noise and applying the diffusion model for feature reconstruction, the separation of ID and OOD samples is implemented according to the reconstruction errors. Extensive experimental results on multiple benchmarks built upon various datasets demonstrate that our method achieves state-of-the-art performance in terms of detection accuracy and speed. Code is available at <https://github.com/xbyym/DLSR>.
Related papers
- PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAE is a self-supervised learning framework that enhances global feature representation of point cloud mask autoencoders.
We show that PseudoNeg-MAE achieves state-of-the-art performance on the ModelNet40 and ScanObjectNN datasets.
arXiv Detail & Related papers (2024-09-24T07:57:21Z) - Exploiting Diffusion Prior for Out-of-Distribution Detection [11.11093497717038]
Out-of-distribution (OOD) detection is crucial for deploying robust machine learning models.
We present a novel approach for OOD detection that leverages the generative ability of diffusion models and the powerful feature extraction capabilities of CLIP.
arXiv Detail & Related papers (2024-06-16T23:55:25Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - CMFDFormer: Transformer-based Copy-Move Forgery Detection with Continual
Learning [52.72888626663642]
Copy-move forgery detection aims at detecting duplicated regions in a suspected forged image.
Deep learning based copy-move forgery detection methods are in the ascendant.
We propose a Transformer-style copy-move forgery network named as CMFDFormer.
We also provide a novel PCSD continual learning framework to help CMFDFormer handle new tasks.
arXiv Detail & Related papers (2023-11-22T09:27:46Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Denoising diffusion models for out-of-distribution detection [2.113925122479677]
We exploit the view of denoising probabilistic diffusion models (DDPM) as denoising autoencoders.
We use DDPMs to reconstruct an input that has been noised to a range of noise levels, and use the resulting multi-dimensional reconstruction error to classify out-of-distribution inputs.
arXiv Detail & Related papers (2022-11-14T20:35:11Z) - Watermarking for Out-of-distribution Detection [76.20630986010114]
Out-of-distribution (OOD) detection aims to identify OOD data based on representations extracted from well-trained deep models.
We propose a general methodology named watermarking in this paper.
We learn a unified pattern that is superimposed onto features of original data, and the model's detection capability is largely boosted after watermarking.
arXiv Detail & Related papers (2022-10-27T06:12:32Z) - READ: Aggregating Reconstruction Error into Out-of-distribution
Detection [5.069442437365223]
Deep neural networks are known to be overconfident for abnormal data.
We propose READ (Reconstruction Error Aggregated Detector) to unify inconsistencies from classifier and autoencoder.
Our method reduces the average FPR@95TPR by up to 9.8% compared with previous state-of-the-art OOD detection algorithms.
arXiv Detail & Related papers (2022-06-15T11:30:41Z) - Learning by Erasing: Conditional Entropy based Transferable Out-Of-Distribution Detection [17.31471594748061]
Out-of-distribution (OOD) detection is essential to handle the distribution shifts between training and test scenarios.
Existing methods require retraining to capture the dataset-specific feature representation or data distribution.
We propose a deep generative models (DGM) based transferable OOD detection method, which is unnecessary to retrain on a new ID dataset.
arXiv Detail & Related papers (2022-04-23T10:19:58Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.