Simple Quantum State Encodings for Hybrid Programming of Quantum
Simulators
- URL: http://arxiv.org/abs/2204.11042v1
- Date: Sat, 23 Apr 2022 10:22:21 GMT
- Title: Simple Quantum State Encodings for Hybrid Programming of Quantum
Simulators
- Authors: Thomas Gabor, Marian Lingsch Rosenfeld, Claudia Linnhoff-Popien
- Abstract summary: We show the admissibility of using a classical database to encode quantum states for a few practical examples.
We argue in favor of further optimizations for quantum simulation targeting simpler, only'semi-quantum' circuits.
- Score: 10.953231643211229
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Especially sparse quantum states can be efficiently encoded with simple
classical data structures. We show the admissibility of using a classical
database to encode quantum states for a few practical examples and argue in
favor of further optimizations for quantum simulation targeting simpler, only
'semi-quantum' circuits.
Related papers
- Quantum data encoding as a distinct abstraction layer in the design of quantum circuits [1.1510009152620668]
We formalize the concept of quantum data encoding, namely the format providing a representation of a data set through a quantum state.
We show how major quantum algorithms find a natural interpretation in terms of data loading.
The new conceptual framework is exemplified by considering its application to quantum-based Monte Carlo simulations.
arXiv Detail & Related papers (2024-09-14T07:00:58Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Sparse Quantum State Preparation for Strongly Correlated Systems [0.0]
In principle, the encoding of the exponentially scaling many-electron wave function onto a linearly scaling qubit register offers a promising solution to overcome the limitations of traditional quantum chemistry methods.
An essential requirement for ground state quantum algorithms to be practical is the initialisation of the qubits to a high-quality approximation of the sought-after ground state.
Quantum State Preparation (QSP) allows the preparation of approximate eigenstates obtained from classical calculations, but it is frequently treated as an oracle in quantum information.
arXiv Detail & Related papers (2023-11-06T18:53:50Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A Reorder Trick for Decision Diagram Based Quantum Circuit Simulation [0.4358626952482686]
We study two classes of quantum circuits on which the state-of-the-art decision diagram based simulators failed to perform well in terms of simulation time.
We propose a simple and powerful reorder trick to boost the simulation of such quantum circuits.
arXiv Detail & Related papers (2022-11-14T04:55:25Z) - Conventions for Quantum Pseudocode [0.0]
conventions can be used for presenting any quantum algorithm down to the lowest level.
In principle a formal version of quantum pseudocode could be used in a future extension of a conventional language.
arXiv Detail & Related papers (2022-11-04T16:24:45Z) - Quantum compression with classically simulatable circuits [0.5735035463793007]
We present a strategy to design quantum autoencoders using evolutionary algorithms for transforming quantum information into lower-dimensional representations.
We successfully demonstrate the initial applications of the algorithm for compressing different families of quantum states.
This approach opens the possibility of using classical logic to find low representations of quantum data, using fewer computational resources.
arXiv Detail & Related papers (2022-07-06T20:36:10Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.