Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization
- URL: http://arxiv.org/abs/2406.03466v1
- Date: Wed, 5 Jun 2024 17:16:07 GMT
- Title: Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization
- Authors: Daniel Claudino, Dmitry I. Lyakh, Alexander J. McCaskey,
- Abstract summary: We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
- Score: 44.99833362998488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum circuit execution is the central task in quantum computation. Due to inherent quantum-mechanical constraints, quantum computing workflows often involve a considerable number of independent measurements over a large set of slightly different quantum circuits. Here we discuss a simple model for parallelizing simulation of such quantum circuit executions that is based on introducing a large array of virtual quantum processing units, mapped to classical HPC nodes, as a parallel quantum computing platform. Implemented within the XACC framework, the model can readily take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend supported by XACC. We illustrate the performance of this approach by demonstrating strong scaling in two pertinent domain science problems, namely in computing the gradients for the multi-contracted variational quantum eigensolver and in data-driven quantum circuit learning, where we vary the number of qubits and the number of circuit layers. The latter (classical) simulation leverages the cuQuantum SDK library to run efficiently on GPU-accelerated HPC platforms.
Related papers
- Application of Large Language Models to Quantum State Simulation [0.11666234644810894]
Currently, various quantum simulators provide powerful tools for researchers, but simulating quantum evolution with these simulators often incurs high time costs.
This paper details the process of constructing 1-qubit and 2-qubit quantum simulator models, extending to multiple qubits, and ultimately implementing a 3-qubit example.
Our study demonstrates that LLMs can effectively learn and predict the evolution patterns among quantum bits, with minimal error compared to the theoretical output states.
arXiv Detail & Related papers (2024-10-09T07:23:13Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Multi-GPU-Enabled Hybrid Quantum-Classical Workflow in Quantum-HPC Middleware: Applications in Quantum Simulations [1.9922905420195367]
This study introduces an innovative distribution-aware Quantum-Classical-Quantum architecture.
It integrates cutting-edge quantum software framework works with high-performance classical computing resources.
It addresses challenges in quantum simulation for materials and condensed matter physics.
arXiv Detail & Related papers (2024-03-09T07:38:45Z) - Quantum algorithms in distributed quantum computing [0.0]
Distributed quantum computing (DQC) provides a way to scale quantum computers using multiple quantum processing units (QPU) which are connected through quantum communication links.
We have built a distributed quantum computing simulator and used it to investigate quantum algorithms.
We show the applicability of dynamic quantum circuits in DQC, where mid-circuit measurements, local operations, and classical communication are used in place of noisy inter-processor (nonlocal) quantum gates.
arXiv Detail & Related papers (2024-02-16T15:05:15Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Towards practical and massively parallel quantum computing emulation for
quantum chemistry [10.095945254794906]
Quantum computing is moving beyond its early stage and seeking for commercial applications in chemical and biomedical sciences.
It is valuable to emulate quantum computing on classical computers for developing quantum algorithms and validating quantum hardware.
Here we demonstrate a high-performance and massively parallel variational quantum eigensolver simulator based on matrix product states.
arXiv Detail & Related papers (2023-03-07T06:44:18Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.