Class Balanced PixelNet for Neurological Image Segmentation
- URL: http://arxiv.org/abs/2204.11048v1
- Date: Sat, 23 Apr 2022 10:57:54 GMT
- Title: Class Balanced PixelNet for Neurological Image Segmentation
- Authors: Mobarakol Islam and Hongliang Ren
- Abstract summary: We propose an automatic brain tumor segmentation approach (e.g., PixelNet) using a pixel-level convolutional neural network (CNN)
The proposed model has achieved promising results in brain tumor and ischemic stroke segmentation datasets.
- Score: 20.56747443955369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an automatic brain tumor segmentation approach
(e.g., PixelNet) using a pixel-level convolutional neural network (CNN). The
model extracts feature from multiple convolutional layers and concatenate them
to form a hyper-column where samples a modest number of pixels for
optimization. Hyper-column ensures both local and global contextual information
for pixel-wise predictors. The model confirms the statistical efficiency by
sampling a few pixels in the training phase where spatial redundancy limits the
information learning among the neighboring pixels in conventional pixel-level
semantic segmentation approaches. Besides, label skewness in training data
leads the convolutional model often converge to certain classes which is a
common problem in the medical dataset. We deal with this problem by selecting
an equal number of pixels for all the classes in sampling time. The proposed
model has achieved promising results in brain tumor and ischemic stroke lesion
segmentation datasets.
Related papers
- PixelBytes: Catching Unified Representation for Multimodal Generation [0.0]
PixelBytes is an approach for unified multimodal representation learning.
We explore integrating text, audio, action-state, and pixelated images (sprites) into a cohesive representation.
We conducted experiments on a PixelBytes Pokemon dataset and an Optimal-Control dataset.
arXiv Detail & Related papers (2024-09-16T09:20:13Z) - Bayesian Active Learning for Semantic Segmentation [9.617769135242973]
We introduce a Bayesian active learning framework based on sparse pixel-level annotation.
BalEnt captures the information between the models' predicted marginalized probability distribution and the pixel labels.
We train our proposed active learning framework for Cityscapes, Camvid, ADE20K and VOC2012 benchmark datasets.
arXiv Detail & Related papers (2024-08-03T07:26:10Z) - A consensus-constrained parsimonious Gaussian mixture model for
clustering hyperspectral images [0.0]
Food engineers use hyperspectral images to classify the type and quality of a food sample.
In order to train these methods, every pixel in each training image needs to be labelled.
A consensus-constrained parsimonious Gaussian mixture model (ccPGMM) is proposed to label pixels in hyperspectral images.
arXiv Detail & Related papers (2024-03-05T22:23:43Z) - Semi-supervised segmentation of land cover images using nonlinear
canonical correlation analysis with multiple features and t-SNE [1.7000283696243563]
Image segmentation is a clustering task whereby each pixel is assigned a cluster label.
In this work, by resorting to label only a small quantity of pixels, a new semi-supervised segmentation approach is proposed.
The proposed semi-supervised RBF-CCA algorithm has been implemented on several remotely sensed multispectral images.
arXiv Detail & Related papers (2024-01-22T17:56:07Z) - SpACNN-LDVAE: Spatial Attention Convolutional Latent Dirichlet Variational Autoencoder for Hyperspectral Pixel Unmixing [1.8024397171920885]
This work extends the Latent Dirichlet Variational Autoencoder (LDVAE) pixel unmixing scheme by taking into account local spatial context.
The proposed method uses an isotropic convolutional neural network with spatial attention to encode pixels as a dirichlet distribution over endmembers.
arXiv Detail & Related papers (2023-11-17T18:45:00Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [59.968362815126326]
Digital image forensics plays a crucial role in image authentication and manipulation localization.
This paper presents a generalized and robust manipulation localization model through the analysis of pixel inconsistency artifacts.
Experiments show that our method successfully extracts inherent pixel-inconsistency forgery fingerprints.
arXiv Detail & Related papers (2023-09-30T02:54:51Z) - Probabilistic Deep Metric Learning for Hyperspectral Image
Classification [91.5747859691553]
This paper proposes a probabilistic deep metric learning framework for hyperspectral image classification.
It aims to predict the category of each pixel for an image captured by hyperspectral sensors.
Our framework can be readily applied to existing hyperspectral image classification methods.
arXiv Detail & Related papers (2022-11-15T17:57:12Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - PSGR: Pixel-wise Sparse Graph Reasoning for COVID-19 Pneumonia
Segmentation in CT Images [83.26057031236965]
We propose a pixel-wise sparse graph reasoning (PSGR) module to enhance the modeling of long-range dependencies for COVID-19 infected region segmentation in CT images.
The PSGR module avoids imprecise pixel-to-node projections and preserves the inherent information of each pixel for global reasoning.
The solution has been evaluated against four widely-used segmentation models on three public datasets.
arXiv Detail & Related papers (2021-08-09T04:58:23Z) - Superpixel Segmentation Based on Spatially Constrained Subspace
Clustering [57.76302397774641]
We consider each representative region with independent semantic information as a subspace, and formulate superpixel segmentation as a subspace clustering problem.
We show that a simple integration of superpixel segmentation with the conventional subspace clustering does not effectively work due to the spatial correlation of the pixels.
We propose a novel convex locality-constrained subspace clustering model that is able to constrain the spatial adjacent pixels with similar attributes to be clustered into a superpixel.
arXiv Detail & Related papers (2020-12-11T06:18:36Z) - Locally Masked Convolution for Autoregressive Models [107.4635841204146]
LMConv is a simple modification to the standard 2D convolution that allows arbitrary masks to be applied to the weights at each location in the image.
We learn an ensemble of distribution estimators that share parameters but differ in generation order, achieving improved performance on whole-image density estimation.
arXiv Detail & Related papers (2020-06-22T17:59:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.