Bayesian Active Learning for Semantic Segmentation
- URL: http://arxiv.org/abs/2408.01694v1
- Date: Sat, 3 Aug 2024 07:26:10 GMT
- Title: Bayesian Active Learning for Semantic Segmentation
- Authors: Sima Didari, Wenjun Hu, Jae Oh Woo, Heng Hao, Hankyu Moon, Seungjai Min,
- Abstract summary: We introduce a Bayesian active learning framework based on sparse pixel-level annotation.
BalEnt captures the information between the models' predicted marginalized probability distribution and the pixel labels.
We train our proposed active learning framework for Cityscapes, Camvid, ADE20K and VOC2012 benchmark datasets.
- Score: 9.617769135242973
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Fully supervised training of semantic segmentation models is costly and challenging because each pixel within an image needs to be labeled. Therefore, the sparse pixel-level annotation methods have been introduced to train models with a subset of pixels within each image. We introduce a Bayesian active learning framework based on sparse pixel-level annotation that utilizes a pixel-level Bayesian uncertainty measure based on Balanced Entropy (BalEnt) [84]. BalEnt captures the information between the models' predicted marginalized probability distribution and the pixel labels. BalEnt has linear scalability with a closed analytical form and can be calculated independently per pixel without relational computations with other pixels. We train our proposed active learning framework for Cityscapes, Camvid, ADE20K and VOC2012 benchmark datasets and show that it reaches supervised levels of mIoU using only a fraction of labeled pixels while outperforming the previous state-of-the-art active learning models with a large margin.
Related papers
- FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion Models [56.71672127740099]
We focus on the task of image segmentation, which is traditionally solved by training models on closed-vocabulary datasets.
We leverage different and relatively small-sized, open-source foundation models for zero-shot open-vocabulary segmentation.
Our approach (dubbed FreeSeg-Diff), which does not rely on any training, outperforms many training-based approaches on both Pascal VOC and COCO datasets.
arXiv Detail & Related papers (2024-03-29T10:38:25Z) - Semi-supervised Counting via Pixel-by-pixel Density Distribution
Modelling [135.66138766927716]
This paper focuses on semi-supervised crowd counting, where only a small portion of the training data are labeled.
We formulate the pixel-wise density value to regress as a probability distribution, instead of a single deterministic value.
Our method clearly outperforms the competitors by a large margin under various labeled ratio settings.
arXiv Detail & Related papers (2024-02-23T12:48:02Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [59.968362815126326]
Digital image forensics plays a crucial role in image authentication and manipulation localization.
This paper presents a generalized and robust manipulation localization model through the analysis of pixel inconsistency artifacts.
Experiments show that our method successfully extracts inherent pixel-inconsistency forgery fingerprints.
arXiv Detail & Related papers (2023-09-30T02:54:51Z) - NP-SemiSeg: When Neural Processes meet Semi-Supervised Semantic
Segmentation [87.50830107535533]
Semi-supervised semantic segmentation involves assigning pixel-wise labels to unlabeled images at training time.
Current approaches to semi-supervised semantic segmentation work by predicting pseudo-labels for each pixel from a class-wise probability distribution output by a model.
In this work, we move one step forward by adapting NPs to semi-supervised semantic segmentation, resulting in a new model called NP-SemiSeg.
arXiv Detail & Related papers (2023-08-05T12:42:15Z) - Residual Pattern Learning for Pixel-wise Out-of-Distribution Detection
in Semantic Segmentation [38.784135463275305]
This paper introduces a new residual pattern learning (RPL) module that assists the segmentation model to detect OoD pixels without affecting the inlier segmentation performance.
We also present a novel context-robust contrastive learning (CoroCL) that enforces RPL to robustly detect OoD pixels among various contexts.
Our approach improves by around 10% FPR and 7% AuPRC the previous state-of-the-art in Fishyscapes, Segment-Me-If-You-Can, and RoadAnomaly datasets.
arXiv Detail & Related papers (2022-11-26T08:32:28Z) - Probabilistic Deep Metric Learning for Hyperspectral Image
Classification [91.5747859691553]
This paper proposes a probabilistic deep metric learning framework for hyperspectral image classification.
It aims to predict the category of each pixel for an image captured by hyperspectral sensors.
Our framework can be readily applied to existing hyperspectral image classification methods.
arXiv Detail & Related papers (2022-11-15T17:57:12Z) - Class Balanced PixelNet for Neurological Image Segmentation [20.56747443955369]
We propose an automatic brain tumor segmentation approach (e.g., PixelNet) using a pixel-level convolutional neural network (CNN)
The proposed model has achieved promising results in brain tumor and ischemic stroke segmentation datasets.
arXiv Detail & Related papers (2022-04-23T10:57:54Z) - Mining Contextual Information Beyond Image for Semantic Segmentation [37.783233906684444]
The paper studies the context aggregation problem in semantic image segmentation.
It proposes to mine the contextual information beyond individual images to further augment the pixel representations.
The proposed method could be effortlessly incorporated into existing segmentation frameworks.
arXiv Detail & Related papers (2021-08-26T14:34:23Z) - All you need are a few pixels: semantic segmentation with PixelPick [30.234492042103966]
In this work, we show that in order to achieve a good level of segmentation performance, all you need are a few well-chosen pixel labels.
We demonstrate how to exploit this phenomena within an active learning framework, termed PixelPick, to radically reduce labelling cost.
arXiv Detail & Related papers (2021-04-13T17:55:33Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Deep Active Learning for Joint Classification & Segmentation with Weak
Annotator [22.271760669551817]
CNN visualization and interpretation methods, like class-activation maps (CAMs), are typically used to highlight the image regions linked to class predictions.
We propose an active learning framework, which progressively integrates pixel-level annotations during training.
Our results indicate that, by simply using random sample selection, the proposed approach can significantly outperform state-of-the-art CAMs and AL methods.
arXiv Detail & Related papers (2020-10-10T03:25:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.