論文の概要: A Survey on Unsupervised Anomaly Detection Algorithms for Industrial
Images
- arxiv url: http://arxiv.org/abs/2204.11161v4
- Date: Tue, 13 Jun 2023 06:36:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 18:42:04.194525
- Title: A Survey on Unsupervised Anomaly Detection Algorithms for Industrial
Images
- Title(参考訳): 産業画像の教師なし異常検出アルゴリズムに関する調査研究
- Authors: Yajie Cui, Zhaoxiang Liu and Shiguo Lian
- Abstract要約: 産業4.0の発展に伴い、表面欠陥検出・異常検出が産業分野の話題となっている。
教師なし学習は、上記の視覚的産業異常検出の欠点に対処する大きな可能性を持っている。
- 参考スコア(独自算出の注目度): 2.4976719861186845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In line with the development of Industry 4.0, surface defect
detection/anomaly detection becomes a topical subject in the industry field.
Improving efficiency as well as saving labor costs has steadily become a matter
of great concern in practice, where deep learning-based algorithms perform
better than traditional vision inspection methods in recent years. While
existing deep learning-based algorithms are biased towards supervised learning,
which not only necessitates a huge amount of labeled data and human labor, but
also brings about inefficiency and limitations. In contrast, recent research
shows that unsupervised learning has great potential in tackling the above
disadvantages for visual industrial anomaly detection. In this survey, we
summarize current challenges and provide a thorough overview of recently
proposed unsupervised algorithms for visual industrial anomaly detection
covering five categories, whose innovation points and frameworks are described
in detail. Meanwhile, publicly available datasets for industrial anomaly
detection are introduced. By comparing different classes of methods, the
advantages and disadvantages of anomaly detection algorithms are summarized.
Based on the current research framework, we point out the core issue that
remains to be resolved and provide further improvement directions. Meanwhile,
based on the latest technological trends, we offer insights into future
research directions. It is expected to assist both the research community and
industry in developing a broader and cross-domain perspective.
- Abstract(参考訳): 産業4.0の発展に伴い、表面欠陥検出・異常検出は産業分野の話題となっている。
近年, 深層学習に基づくアルゴリズムが従来の視覚検査法よりも優れており, 効率の向上, 省力化, 省力化が課題となっている。
既存のディープラーニングベースのアルゴリズムは教師付き学習に偏っているが、これは大量のラベル付きデータと人間の労働を必要とするだけでなく、非効率性と制限をもたらす。
対照的に、最近の研究では、教師なし学習は、上記の視覚産業異常検出の欠点に取り組む上で大きな可能性を秘めている。
本稿では,最近の課題を概説し,イノベーションポイントとフレームワークを詳述した5つのカテゴリをカバーする視覚産業異常検出のための教師なしアルゴリズムについて概説する。
一方,産業的異常検出のための公開データセットも導入されている。
異なる手法のクラスを比較することにより、異常検出アルゴリズムの利点と欠点を要約する。
現在の研究枠組みに基づいて,解決すべき核となる課題を指摘し,さらなる改善の方向性を示す。
一方,最新の技術動向を踏まえ,今後の研究動向について考察する。
より広範かつクロスドメインな視点で研究コミュニティと産業の両方を支援することが期待されている。
関連論文リスト
- ADer: A Comprehensive Benchmark for Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい異常検出手法のモジュラーフレームワークであるtextbftextitADerを提案する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - Intelligent Condition Monitoring of Industrial Plants: An Overview of
Methodologies and Uncertainty Management Strategies [2.600463444320238]
本稿では, 産業プラントの知的状態モニタリングと故障検出, 診断方法の概要について述べる。
最もポピュラーで最先端のディープラーニング(DL)と機械学習(ML)アルゴリズムは、産業プラントの状態監視、故障検出、診断のためのアルゴリズムである。
テネシー・イーストマン・プロセス(TEP)を利用したアルゴリズムの精度と仕様の比較を行った。
論文 参考訳(メタデータ) (2024-01-03T21:35:03Z) - Semi-supervised Object Detection: A Survey on Recent Research and
Progress [2.2398477810999817]
半教師対象検出(SSOD)は、高い研究価値と実践性のために、ますます注目されている。
本稿では,5つの側面からSSODのアプローチに関する包括的かつ最新の調査を紹介する。
論文 参考訳(メタデータ) (2023-06-25T02:54:03Z) - Deep Industrial Image Anomaly Detection: A Survey [85.44223757234671]
近年の深層学習の急速な発展は,産業用画像異常検出(IAD)のマイルストーンとなった
本稿では,ディープラーニングによる画像異常検出手法の総合的なレビューを行う。
画像異常検出のオープニング課題をいくつか取り上げる。
論文 参考訳(メタデータ) (2023-01-27T03:18:09Z) - Deep Learning for Unsupervised Anomaly Localization in Industrial
Images: A Survey [3.281166249990719]
実際の産業シナリオでは、欠陥サンプルの不足、アノテーションのコスト、欠陥に関する事前知識の欠如は、教師付き手法を効果的にしない可能性がある。
近年, 産業検査作業において, 教師なしの異常局所化アルゴリズムが広く用いられている。
論文 参考訳(メタデータ) (2022-07-21T04:26:48Z) - Self-Supervised Anomaly Detection in Computer Vision and Beyond: A
Survey and Outlook [9.85256783464329]
異常検出は、サイバーセキュリティ、金融、医療など、さまざまな領域において重要な役割を担っている。
近年,深層学習モデルの顕著な成長により,この分野において大きな進歩を遂げている。
自己教師型学習の出現は、既存の最先端のアプローチよりも優れた新しいADアルゴリズムの開発を引き起こした。
論文 参考訳(メタデータ) (2022-05-10T21:16:14Z) - Weakly Supervised Object Localization and Detection: A Survey [145.5041117184952]
オブジェクトのローカライゼーションと検出は、新しい世代のコンピュータビジョンシステムを開発する上で重要な役割を果たす。
本稿では,(1)古典的モデル,(2)既成の深層ネットワークの特徴表現を用いたアプローチ,(3)ディープラーニングのみに基づくアプローチ,(4)この分野で広く利用されている公開データセットと標準評価指標についてレビューする。
この分野における重要な課題、この分野の開発履歴、各カテゴリーの手法の利点/欠点、異なるカテゴリーの方法間の関係、弱い監督対象のローカリゼーションおよび検出方法の適用、およびこの研究分野の開発をさらに促進するための潜在的な将来の方向性について議論します。
論文 参考訳(メタデータ) (2021-04-16T06:44:50Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
SWADと呼ばれる新しい選択および重み付けに基づく異常検出フレームワークを提案する。
ベンチマークと実世界のデータセットによる実験は、SWADの有効性と優位性を示している。
論文 参考訳(メタデータ) (2021-03-08T10:56:38Z) - Deep Learning for Anomaly Detection: A Review [150.9270911031327]
本稿では,3つの高レベルカテゴリと11の細粒度カテゴリの進歩を網羅した包括的分類法による深部異常検出の研究について調査する。
我々は、それらの重要な直観、客観的機能、基礎となる仮定、利点とデメリットをレビューし、上記の課題にどのように対処するかについて議論する。
論文 参考訳(メタデータ) (2020-07-06T02:21:16Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。