RealNet: Combining Optimized Object Detection with Information Fusion
Depth Estimation Co-Design Method on IoT
- URL: http://arxiv.org/abs/2204.11216v1
- Date: Sun, 24 Apr 2022 08:35:55 GMT
- Title: RealNet: Combining Optimized Object Detection with Information Fusion
Depth Estimation Co-Design Method on IoT
- Authors: Zhuohao Li, Fandi Gou, Qixin De, Leqi Ding, Yuanhang Zhang, Yunze Cai
- Abstract summary: We propose a co-design method combining the model-streamlined recognition algorithm, the depth estimation algorithm, and information fusion.
The method proposed in this paper is suitable for mobile platforms with high real-time request.
- Score: 2.9275056713717285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Depth Estimation and Object Detection Recognition play an important role in
autonomous driving technology under the guidance of deep learning artificial
intelligence. We propose a hybrid structure called RealNet: a co-design method
combining the model-streamlined recognition algorithm, the depth estimation
algorithm with information fusion, and deploying them on the Jetson-Nano for
unmanned vehicles with monocular vision sensors. We use ROS for experiment. The
method proposed in this paper is suitable for mobile platforms with high
real-time request. Innovation of our method is using information fusion to
compensate the problem of insufficient frame rate of output image, and improve
the robustness of target detection and depth estimation under monocular
vision.Object Detection is based on YOLO-v5. We have simplified the network
structure of its DarkNet53 and realized a prediction speed up to 0.01s. Depth
Estimation is based on the VNL Depth Estimation, which considers multiple
geometric constraints in 3D global space. It calculates the loss function by
calculating the deviation of the virtual normal vector VN and the label, which
can obtain deeper depth information. We use PnP fusion algorithm to solve the
problem of insufficient frame rate of depth map output. It solves the motion
estimation depth from three-dimensional target to two-dimensional point based
on corner feature matching, which is faster than VNL calculation. We
interpolate VNL output and PnP output to achieve information fusion.
Experiments show that this can effectively eliminate the jitter of depth
information and improve robustness. At the control end, this method combines
the results of target detection and depth estimation to calculate the target
position, and uses a pure tracking control algorithm to track it.
Related papers
- NeRF-Det++: Incorporating Semantic Cues and Perspective-aware Depth
Supervision for Indoor Multi-View 3D Detection [72.0098999512727]
NeRF-Det has achieved impressive performance in indoor multi-view 3D detection by utilizing NeRF to enhance representation learning.
We present three corresponding solutions, including semantic enhancement, perspective-aware sampling, and ordinal depth supervision.
The resulting algorithm, NeRF-Det++, has exhibited appealing performance in the ScanNetV2 and AR KITScenes datasets.
arXiv Detail & Related papers (2024-02-22T11:48:06Z) - Deep Neighbor Layer Aggregation for Lightweight Self-Supervised
Monocular Depth Estimation [1.6775954077761863]
We present a fully convolutional depth estimation network using contextual feature fusion.
Compared to UNet++ and HRNet, we use high-resolution and low-resolution features to reserve information on small targets and fast-moving objects.
Our method reduces the parameters without sacrificing accuracy.
arXiv Detail & Related papers (2023-09-17T13:40:15Z) - Single Image Depth Prediction Made Better: A Multivariate Gaussian Take [163.14849753700682]
We introduce an approach that performs continuous modeling of per-pixel depth.
Our method's accuracy (named MG) is among the top on the KITTI depth-prediction benchmark leaderboard.
arXiv Detail & Related papers (2023-03-31T16:01:03Z) - MDS-Net: A Multi-scale Depth Stratification Based Monocular 3D Object
Detection Algorithm [4.958840734249869]
This paper proposes a one-stage monocular 3D object detection algorithm based on multi-scale depth stratification.
Experiments on the KITTI benchmark show that the MDS-Net outperforms the existing monocular 3D detection methods in 3D detection and BEV detection tasks.
arXiv Detail & Related papers (2022-01-12T07:11:18Z) - Probabilistic and Geometric Depth: Detecting Objects in Perspective [78.00922683083776]
3D object detection is an important capability needed in various practical applications such as driver assistance systems.
Monocular 3D detection, as an economical solution compared to conventional settings relying on binocular vision or LiDAR, has drawn increasing attention recently but still yields unsatisfactory results.
This paper first presents a systematic study on this problem and observes that the current monocular 3D detection problem can be simplified as an instance depth estimation problem.
arXiv Detail & Related papers (2021-07-29T16:30:33Z) - Geometry Uncertainty Projection Network for Monocular 3D Object
Detection [138.24798140338095]
We propose a Geometry Uncertainty Projection Network (GUP Net) to tackle the error amplification problem at both inference and training stages.
Specifically, a GUP module is proposed to obtains the geometry-guided uncertainty of the inferred depth.
At the training stage, we propose a Hierarchical Task Learning strategy to reduce the instability caused by error amplification.
arXiv Detail & Related papers (2021-07-29T06:59:07Z) - VR3Dense: Voxel Representation Learning for 3D Object Detection and
Monocular Dense Depth Reconstruction [0.951828574518325]
We introduce a method for jointly training 3D object detection and monocular dense depth reconstruction neural networks.
It takes as inputs, a LiDAR point-cloud, and a single RGB image during inference and produces object pose predictions as well as a densely reconstructed depth map.
While our object detection is trained in a supervised manner, the depth prediction network is trained with both self-supervised and supervised loss functions.
arXiv Detail & Related papers (2021-04-13T04:25:54Z) - Depth-conditioned Dynamic Message Propagation for Monocular 3D Object
Detection [86.25022248968908]
We learn context- and depth-aware feature representation to solve the problem of monocular 3D object detection.
We show state-of-the-art results among the monocular-based approaches on the KITTI benchmark dataset.
arXiv Detail & Related papers (2021-03-30T16:20:24Z) - PLADE-Net: Towards Pixel-Level Accuracy for Self-Supervised Single-View
Depth Estimation with Neural Positional Encoding and Distilled Matting Loss [49.66736599668501]
We propose a self-supervised single-view pixel-level accurate depth estimation network, called PLADE-Net.
Our method shows unprecedented accuracy levels, exceeding 95% in terms of the $delta1$ metric on the KITTI dataset.
arXiv Detail & Related papers (2021-03-12T15:54:46Z) - Monocular 3D Object Detection with Sequential Feature Association and
Depth Hint Augmentation [12.55603878441083]
FADNet is presented to address the task of monocular 3D object detection.
A dedicated depth hint module is designed to generate row-wise features named as depth hints.
The contributions of this work are validated by conducting experiments and ablation study on the KITTI benchmark.
arXiv Detail & Related papers (2020-11-30T07:19:14Z) - DELTAS: Depth Estimation by Learning Triangulation And densification of
Sparse points [14.254472131009653]
Multi-view stereo (MVS) is the golden mean between the accuracy of active depth sensing and the practicality of monocular depth estimation.
Cost volume based approaches employing 3D convolutional neural networks (CNNs) have considerably improved the accuracy of MVS systems.
We propose an efficient depth estimation approach by first (a) detecting and evaluating descriptors for interest points, then (b) learning to match and triangulate a small set of interest points, and finally (c) densifying this sparse set of 3D points using CNNs.
arXiv Detail & Related papers (2020-03-19T17:56:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.