論文の概要: An Item Response Theory Framework for Persuasion
- arxiv url: http://arxiv.org/abs/2204.11337v1
- Date: Sun, 24 Apr 2022 19:14:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-26 13:38:11.755890
- Title: An Item Response Theory Framework for Persuasion
- Title(参考訳): 説得のための項目応答理論の枠組み
- Authors: Anastassia Kornilova, Daniel Argyle, Vladimir Eidelman
- Abstract要約: 本稿では,言語における議論の説得性の分析に,教育や政治科学研究で人気のある項目応答理論を適用した。
我々は、政治擁護の領域における新しいデータセットを含む3つのデータセットに対して、モデルの性能を実証的に評価する。
- 参考スコア(独自算出の注目度): 3.0938904602244346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we apply Item Response Theory, popular in education and
political science research, to the analysis of argument persuasiveness in
language. We empirically evaluate the model's performance on three datasets,
including a novel dataset in the area of political advocacy. We show the
advantages of separating these components under several style and content
representations, including evaluating the ability of the speaker embeddings
generated by the model to parallel real-world observations about
persuadability.
- Abstract(参考訳): 本稿では,言語における議論の説得性の分析に,教育や政治科学研究で人気のある項目応答理論を適用した。
政治擁護の領域における新しいデータセットを含む3つのデータセットでモデルの性能を実証的に評価する。
本稿では,モデルが生成する話者埋め込みによる説得可能性に関する実世界観測能力の評価を含む,いくつかのスタイルとコンテンツ表現の下でこれらのコンポーネントを分離する利点を示す。
関連論文リスト
- P^3SUM: Preserving Author's Perspective in News Summarization with Diffusion Language Models [57.571395694391654]
既存のアプローチは、要約の50%以上で、ニュース記事の政治的意見やスタンスを変えている。
政治的視点分類器によって制御される拡散モデルに基づく要約手法であるP3SUMを提案する。
3つのニュース要約データセットの実験により、P3SUMは最先端の要約システムより優れていることが示された。
論文 参考訳(メタデータ) (2023-11-16T10:14:28Z) - "We Demand Justice!": Towards Social Context Grounding of Political Texts [19.58924256275583]
ソーシャルメディアの談話は、しばしば「政治的スペクトルの対立する側が使用する、見事に類似した言語」で構成されている。
本稿では、そのような曖昧な文を計算環境で完全に理解するために必要なコンテキストを定義する。
本論文では,テキストの現実的コンテキストを理解する必要がある2つの挑戦的データセットを提案する。
論文 参考訳(メタデータ) (2023-11-15T16:53:35Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - Learning Disentangled Speech Representations [0.412484724941528]
SynSpeechは、非絡み合った音声表現の研究を可能にするために設計された、新しい大規模合成音声データセットである。
本稿では, 線形探索と教師付きアンタングル化指標を併用して, アンタングル化表現学習手法を評価する枠組みを提案する。
SynSpeechは、さまざまな要因のベンチマークを促進し、ジェンダーや話し方のようなより単純な機能の切り離しを期待できると同時に、話者アイデンティティのような複雑な属性を分離する際の課題を強調します。
論文 参考訳(メタデータ) (2023-11-04T04:54:17Z) - Chain-of-Factors Paper-Reviewer Matching [32.86512592730291]
本稿では,意味的・話題的・引用的要因を協調的に考慮した,論文レビューアマッチングのための統一モデルを提案する。
提案したChain-of-Factorsモデルの有効性を,最先端のペーパー-リビューアマッチング手法と科学的事前学習言語モデルと比較した。
論文 参考訳(メタデータ) (2023-10-23T01:29:18Z) - Multi-Dimensional Evaluation of Text Summarization with In-Context
Learning [79.02280189976562]
本稿では,テキスト内学習を用いた多次元評価器として,大規模言語モデルの有効性について検討する。
実験の結果,テキスト要約作業において,文脈内学習に基づく評価手法が学習評価フレームワークと競合していることが判明した。
次に、テキスト内サンプルの選択や数などの要因がパフォーマンスに与える影響を分析する。
論文 参考訳(メタデータ) (2023-06-01T23:27:49Z) - Natural Language Decompositions of Implicit Content Enable Better Text
Representations [56.85319224208865]
本稿では,暗黙的に伝達されたコンテンツを明示的に考慮したテキスト分析手法を提案する。
我々は大きな言語モデルを用いて、観察されたテキストと推論的に関係する命題の集合を生成する。
本研究は,NLPにおいて,文字のみではなく,観察された言語の背景にある意味をモデル化することが重要であることを示唆する。
論文 参考訳(メタデータ) (2023-05-23T23:45:20Z) - Revise and Resubmit: An Intertextual Model of Text-based Collaboration
in Peer Review [52.359007622096684]
ピアレビューは、ほとんどの科学分野における出版プロセスの重要な要素である。
既存のNLP研究は個々のテキストの分析に重点を置いている。
編集補助は、しばしばテキストのペア間の相互作用をモデル化する必要がある。
論文 参考訳(メタデータ) (2022-04-22T16:39:38Z) - Exploring Discourse Structures for Argument Impact Classification [48.909640432326654]
本稿では、文脈経路に沿った2つの議論間の談話関係が、議論の説得力を特定する上で不可欠な要素であることを実証的に示す。
本研究では,文レベルの構造情報を大規模言語モデルから派生した文脈的特徴に注入・融合するDisCOCを提案する。
論文 参考訳(メタデータ) (2021-06-02T06:49:19Z) - The Role of Pragmatic and Discourse Context in Determining Argument
Impact [39.70446357000737]
本稿では,議論のこの側面を研究するための新しいデータセットを提案する。
741件の議論の的となり、47,000件以上の主張がある。
議論的クレームの実践的・言論的文脈を取り入れた予測モデルを提案し,そのモデルが,特定の主張行内で個々のクレームが知覚する影響を予測するために,クレーム固有の言語的特徴に依存するモデルより優れていることを示す。
論文 参考訳(メタデータ) (2020-04-06T23:00:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。