Entity-Conditioned Question Generation for Robust Attention Distribution
in Neural Information Retrieval
- URL: http://arxiv.org/abs/2204.11373v1
- Date: Sun, 24 Apr 2022 22:36:48 GMT
- Title: Entity-Conditioned Question Generation for Robust Attention Distribution
in Neural Information Retrieval
- Authors: Revanth Gangi Reddy, Md Arafat Sultan, Martin Franz, Avirup Sil, Heng
Ji
- Abstract summary: We show that supervised neural information retrieval models are prone to learning sparse attention patterns over passage tokens.
Using a novel targeted synthetic data generation method, we teach neural IR to attend more uniformly and robustly to all entities in a given passage.
- Score: 51.53892300802014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that supervised neural information retrieval (IR) models are prone to
learning sparse attention patterns over passage tokens, which can result in key
phrases including named entities receiving low attention weights, eventually
leading to model under-performance. Using a novel targeted synthetic data
generation method that identifies poorly attended entities and conditions the
generation episodes on those, we teach neural IR to attend more uniformly and
robustly to all entities in a given passage. On two public IR benchmarks, we
empirically show that the proposed method helps improve both the model's
attention patterns and retrieval performance, including in zero-shot settings.
Related papers
- Robust Neural Information Retrieval: An Adversarial and Out-of-distribution Perspective [111.58315434849047]
robustness of neural information retrieval models (IR) models has garnered significant attention.
We view the robustness of IR to be a multifaceted concept, emphasizing its necessity against adversarial attacks, out-of-distribution (OOD) scenarios and performance variance.
We provide an in-depth discussion of existing methods, datasets, and evaluation metrics, shedding light on challenges and future directions in the era of large language models.
arXiv Detail & Related papers (2024-07-09T16:07:01Z) - Robust Saliency-Aware Distillation for Few-shot Fine-grained Visual
Recognition [57.08108545219043]
Recognizing novel sub-categories with scarce samples is an essential and challenging research topic in computer vision.
Existing literature addresses this challenge by employing local-based representation approaches.
This article proposes a novel model, Robust Saliency-aware Distillation (RSaD), for few-shot fine-grained visual recognition.
arXiv Detail & Related papers (2023-05-12T00:13:17Z) - A Detailed Study of Interpretability of Deep Neural Network based Top
Taggers [3.8541104292281805]
Recent developments in explainable AI (XAI) allow researchers to explore the inner workings of deep neural networks (DNNs)
We explore interpretability of models designed to identify jets coming from top quark decay in high energy proton-proton collisions at the Large Hadron Collider (LHC)
Our studies uncover some major pitfalls of existing XAI methods and illustrate how they can be overcome to obtain consistent and meaningful interpretation of these models.
arXiv Detail & Related papers (2022-10-09T23:02:42Z) - MINER: Improving Out-of-Vocabulary Named Entity Recognition from an
Information Theoretic Perspective [57.19660234992812]
NER model has achieved promising performance on standard NER benchmarks.
Recent studies show that previous approaches may over-rely on entity mention information, resulting in poor performance on out-of-vocabulary (OOV) entity recognition.
We propose MINER, a novel NER learning framework, to remedy this issue from an information-theoretic perspective.
arXiv Detail & Related papers (2022-04-09T05:18:20Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Layer-wise Analysis of a Self-supervised Speech Representation Model [26.727775920272205]
Self-supervised learning approaches have been successful for pre-training speech representation models.
Not much has been studied about the type or extent of information encoded in the pre-trained representations themselves.
arXiv Detail & Related papers (2021-07-10T02:13:25Z) - Data-Informed Global Sparseness in Attention Mechanisms for Deep Neural Networks [33.07113523598028]
We propose Attention Pruning (AP), a framework that observes attention patterns in a fixed dataset and generates a global sparseness mask.
AP saves 90% of attention computation for language modeling and about 50% for machine translation and GLUE tasks, maintaining result quality.
arXiv Detail & Related papers (2020-11-20T13:58:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.