MINER: Improving Out-of-Vocabulary Named Entity Recognition from an
Information Theoretic Perspective
- URL: http://arxiv.org/abs/2204.04391v1
- Date: Sat, 9 Apr 2022 05:18:20 GMT
- Title: MINER: Improving Out-of-Vocabulary Named Entity Recognition from an
Information Theoretic Perspective
- Authors: Xiao Wang, Shihan Dou, Limao Xiong, Yicheng Zou, Qi Zhang, Tao Gui,
Liang Qiao, Zhanzhan Cheng, Xuanjing Huang
- Abstract summary: NER model has achieved promising performance on standard NER benchmarks.
Recent studies show that previous approaches may over-rely on entity mention information, resulting in poor performance on out-of-vocabulary (OOV) entity recognition.
We propose MINER, a novel NER learning framework, to remedy this issue from an information-theoretic perspective.
- Score: 57.19660234992812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: NER model has achieved promising performance on standard NER benchmarks.
However, recent studies show that previous approaches may over-rely on entity
mention information, resulting in poor performance on out-of-vocabulary (OOV)
entity recognition. In this work, we propose MINER, a novel NER learning
framework, to remedy this issue from an information-theoretic perspective. The
proposed approach contains two mutual information-based training objectives: i)
generalizing information maximization, which enhances representation via deep
understanding of context and entity surface forms; ii) superfluous information
minimization, which discourages representation from rote memorizing entity
names or exploiting biased cues in data. Experiments on various settings and
datasets demonstrate that it achieves better performance in predicting OOV
entities.
Related papers
- Evaluating Named Entity Recognition Using Few-Shot Prompting with Large Language Models [0.0]
Few-Shot Prompting or in-context learning enables models to recognize entities with minimal examples.
We assess state-of-the-art models like GPT-4 in NER tasks, comparing their few-shot performance to fully supervised benchmarks.
arXiv Detail & Related papers (2024-08-28T13:42:28Z) - SCANNER: Knowledge-Enhanced Approach for Robust Multi-modal Named Entity Recognition of Unseen Entities [10.193908215351497]
We propose SCANNER, a model capable of effectively handling all three NER variants.
SCANNER is a two-stage structure; we extract entity candidates in the first stage and use it as a query to get knowledge.
To tackle the challenges arising from noisy annotations in NER datasets, we introduce a novel self-distillation method.
arXiv Detail & Related papers (2024-04-02T13:05:41Z) - Entity-Conditioned Question Generation for Robust Attention Distribution
in Neural Information Retrieval [51.53892300802014]
We show that supervised neural information retrieval models are prone to learning sparse attention patterns over passage tokens.
Using a novel targeted synthetic data generation method, we teach neural IR to attend more uniformly and robustly to all entities in a given passage.
arXiv Detail & Related papers (2022-04-24T22:36:48Z) - Nested Named Entity Recognition as Holistic Structure Parsing [92.8397338250383]
This work models the full nested NEs in a sentence as a holistic structure, then we propose a holistic structure parsing algorithm to disclose the entire NEs once for all.
Experiments show that our model yields promising results on widely-used benchmarks which approach or even achieve state-of-the-art.
arXiv Detail & Related papers (2022-04-17T12:48:20Z) - KARL-Trans-NER: Knowledge Aware Representation Learning for Named Entity
Recognition using Transformers [0.0]
We propose a Knowledge Aware Representation Learning (KARL) Network for Named Entity Recognition (NER)
KARL is based on a Transformer that utilizes large knowledge bases represented as fact triplets, converts them to a context, and extracts essential information residing inside to generate contextualized triplet representation for feature augmentation.
Experimental results show that the augmentation done using KARL can considerably boost the performance of our NER system and achieve significantly better results than existing approaches in the literature on three publicly available NER datasets, namely CoNLL 2003, CoNLL++, and OntoNotes v5.
arXiv Detail & Related papers (2021-11-30T14:29:33Z) - Distantly-Supervised Named Entity Recognition with Noise-Robust Learning
and Language Model Augmented Self-Training [66.80558875393565]
We study the problem of training named entity recognition (NER) models using only distantly-labeled data.
We propose a noise-robust learning scheme comprised of a new loss function and a noisy label removal step.
Our method achieves superior performance, outperforming existing distantly-supervised NER models by significant margins.
arXiv Detail & Related papers (2021-09-10T17:19:56Z) - Improving Named Entity Recognition with Attentive Ensemble of Syntactic
Information [36.03316058182617]
Named entity recognition (NER) is highly sensitive to sentential syntactic and semantic properties.
In this paper, we improve NER by leveraging different types of syntactic information through attentive ensemble.
Experimental results on six English and Chinese benchmark datasets suggest the effectiveness of the proposed model.
arXiv Detail & Related papers (2020-10-29T10:25:17Z) - Learning from Context or Names? An Empirical Study on Neural Relation
Extraction [112.06614505580501]
We study the effect of two main information sources in text: textual context and entity mentions (names)
We propose an entity-masked contrastive pre-training framework for relation extraction (RE)
Our framework can improve the effectiveness and robustness of neural models in different RE scenarios.
arXiv Detail & Related papers (2020-10-05T11:21:59Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
We take the NER task as a testbed to analyze the generalization behavior of existing models from different perspectives.
Experiments with in-depth analyses diagnose the bottleneck of existing neural NER models.
As a by-product of this paper, we have open-sourced a project that involves a comprehensive summary of recent NER papers.
arXiv Detail & Related papers (2020-01-12T04:33:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.