Aspect-based Analysis of Advertising Appeals for Search Engine
Advertising
- URL: http://arxiv.org/abs/2204.11445v1
- Date: Mon, 25 Apr 2022 05:31:07 GMT
- Title: Aspect-based Analysis of Advertising Appeals for Search Engine
Advertising
- Authors: Soichiro Murakami, Peinan Zhang, Sho Hoshino, Hidetaka Kamigaito,
Hiroya Takamura and Manabu Okumura
- Abstract summary: We focus on exploring the effective A$3$ for different industries with the aim of assisting the ad creation process.
Our experiments demonstrated that different industries have their own effective A$3$ and that the identification of the A$3$ contributes to the estimation of advertising performance.
- Score: 37.85305426549587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Writing an ad text that attracts people and persuades them to click or act is
essential for the success of search engine advertising. Therefore, ad creators
must consider various aspects of advertising appeals (A$^3$) such as the price,
product features, and quality. However, products and services exhibit unique
effective A$^3$ for different industries. In this work, we focus on exploring
the effective A$^3$ for different industries with the aim of assisting the ad
creation process. To this end, we created a dataset of advertising appeals and
used an existing model that detects various aspects for ad texts. Our
experiments demonstrated that different industries have their own effective
A$^3$ and that the identification of the A$^3$ contributes to the estimation of
advertising performance.
Related papers
- A Multimodal Analysis of Influencer Content on Twitter [40.41635575764701]
Line between personal opinions and commercial content promotion is frequently blurred.
This makes automatic detection of regulatory compliance breaches related to influencer advertising difficult.
We introduce a new Twitter (now X) dataset consisting of 15,998 influencer posts mapped into commercial and non-commercial categories.
arXiv Detail & Related papers (2023-09-06T15:07:23Z) - Discrimination through Image Selection by Job Advertisers on Facebook [79.21648699199648]
We propose and investigate the prevalence of a new means for discrimination in job advertising.
It combines both targeting and delivery -- through the disproportionate representation or exclusion of people of certain demographics in job ad images.
We use the Facebook Ad Library to demonstrate the prevalence of this practice.
arXiv Detail & Related papers (2023-06-13T03:43:58Z) - Incrementality Bidding and Attribution [0.4511923587827302]
In digital advertising three major puzzle pieces are central to quantifying advertising incrementality: ad buying/bidding/pricing, attribution, and experimentation.
We propose a methodology that unifies these three concepts into a computationally viable model of both bidding and attribution.
arXiv Detail & Related papers (2022-08-25T18:33:08Z) - Persuasion Strategies in Advertisements [68.70313043201882]
We introduce an extensive vocabulary of persuasion strategies and build the first ad image corpus annotated with persuasion strategies.
We then formulate the task of persuasion strategy prediction with multi-modal learning.
We conduct a real-world case study on 1600 advertising campaigns of 30 Fortune-500 companies.
arXiv Detail & Related papers (2022-08-20T07:33:13Z) - Aggregate effects of advertising decisions: a complex systems look at
search engine advertising via an experimental study [26.218512292529635]
We develop and validate a simulation framework that supports assessments of various advertising strategies and estimations of the impact of mechanisms on the search market.
We conduct three experiments on the aggregate impact of electronic word-of-mouth, the competition level, and strategic bidding behaviors.
arXiv Detail & Related papers (2022-03-04T09:16:15Z) - Online-to-Offline Advertisements as Field Experiments [0.17877823660518105]
We study the difference in offline behavior between customers who received online advertisements and regular customers.
We then find a long-run effect of this externality of advertising that a certain portion of the customers invited to the offline shops revisit these shops.
arXiv Detail & Related papers (2020-10-18T22:04:56Z) - An Empirical Study of In-App Advertising Issues Based on Large Scale App
Review Analysis [67.58267006314415]
We present a large-scale analysis on ad-related user feedback from App Store and Google Play.
From a statistical analysis of 36,309 ad-related reviews, we find that users care most about the number of unique ads and ad display frequency during usage.
Some ad issue types are addressed more quickly by developers than other ad issues.
arXiv Detail & Related papers (2020-08-22T05:38:24Z) - Learning to Create Better Ads: Generation and Ranking Approaches for Ad
Creative Refinement [26.70647666598025]
We study approaches to refine the given ad text and image by: (i) generating new ad text, (ii) recommending keyphrases for new ad text, and (iii) recommending image tags (objects in image)
Based on A/B tests conducted by multiple advertisers, we form pairwise examples of inferior and superior ad creatives.
We also share broadly applicable insights from our experiments using data from the Yahoo Gemini ad platform.
arXiv Detail & Related papers (2020-08-17T16:46:28Z) - Do Interruptions Pay Off? Effects of Interruptive Ads on Consumers
Willingness to Pay [79.9312329825761]
We present the results of a study designed to measure the impact of interruptive advertising on consumers willingness to pay for products bearing the advertiser's brand.
Our results contribute to the research on the economic impact of advertising, and introduce a method of measuring actual (as opposed to self-reported) willingness to pay in experimental marketing research.
arXiv Detail & Related papers (2020-05-14T09:26:57Z) - Online Joint Bid/Daily Budget Optimization of Internet Advertising
Campaigns [115.96295568115251]
We study the problem of automating the online joint bid/daily budget optimization of pay-per-click advertising campaigns over multiple channels.
For every campaign, we capture the dependency of the number of clicks on the bid and daily budget by Gaussian Processes.
We design four algorithms and show that they suffer from a regret that is upper bounded with high probability as O(sqrtT)
We present the results of the adoption of our algorithms in a real-world application with a daily average spent of 1,000 Euros for more than one year.
arXiv Detail & Related papers (2020-03-03T11:07:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.