Deep Reinforcement Learning for Online Routing of Unmanned Aerial
Vehicles with Wireless Power Transfer
- URL: http://arxiv.org/abs/2204.11477v1
- Date: Mon, 25 Apr 2022 07:43:08 GMT
- Title: Deep Reinforcement Learning for Online Routing of Unmanned Aerial
Vehicles with Wireless Power Transfer
- Authors: Kaiwen Li, Tao Zhang, Rui Wang, Ling Wang
- Abstract summary: Unmanned aerial vehicle (UAV) plays an vital role in various applications such as delivery, military mission, disaster rescue, communication, etc.
This paper proposes a deep reinforcement learning method to solve the UAV online routing problem with wireless power transfer.
- Score: 9.296415450289706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The unmanned aerial vehicle (UAV) plays an vital role in various applications
such as delivery, military mission, disaster rescue, communication, etc., due
to its flexibility and versatility. This paper proposes a deep reinforcement
learning method to solve the UAV online routing problem with wireless power
transfer, which can charge the UAV remotely without wires, thus extending the
capability of the battery-limited UAV. Our study considers the power
consumption of the UAV and the wireless charging process. Unlike the previous
works, we solve the problem by a designed deep neural network. The model is
trained using a deep reinforcement learning method offline, and is used to
optimize the UAV routing problem online. On small and large scale instances,
the proposed model runs from four times to 500 times faster than Google
OR-tools, the state-of-the-art combinatorial optimization solver, with
identical solution quality. It also outperforms different types of heuristic
and local search methods in terms of both run-time and optimality. In addition,
once the model is trained, it can scale to new generated problem instances with
arbitrary topology that are not seen during training. The proposed method is
practically applicable when the problem scale is large and the response time is
crucial.
Related papers
- Multi-UAV Multi-RIS QoS-Aware Aerial Communication Systems using DRL and PSO [34.951735976771765]
Unmanned Aerial Vehicles (UAVs) have attracted the attention of researchers in academia and industry for providing wireless services to ground users.
limited resources of UAVs can pose challenges for adopting UAVs for such applications.
Our system model considers a UAV swarm that navigates an area, providing wireless communication to ground users with RIS support to improve the coverage of the UAVs.
arXiv Detail & Related papers (2024-06-16T17:53:56Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Tiny Multi-Agent DRL for Twins Migration in UAV Metaverses: A Multi-Leader Multi-Follower Stackelberg Game Approach [57.15309977293297]
The synergy between Unmanned Aerial Vehicles (UAVs) and metaverses is giving rise to an emerging paradigm named UAV metaverses.
We propose a tiny machine learning-based Stackelberg game framework based on pruning techniques for efficient UT migration in UAV metaverses.
arXiv Detail & Related papers (2024-01-18T02:14:13Z) - Self-Inspection Method of Unmanned Aerial Vehicles in Power Plants Using
Deep Q-Network Reinforcement Learning [0.0]
The research proposes a power plant inspection system incorporating UAV autonomous navigation and DQN reinforcement learning.
The trained model makes it more likely that the inspection strategy will be applied in practice by enabling the UAV to move around on its own in difficult environments.
arXiv Detail & Related papers (2023-03-16T00:58:50Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
We propose a double-level deep reinforcement learning (DL-DRL) approach based on a divide and conquer framework (DCF)
Particularly, we design an encoder-decoder structured policy network in our upper-level DRL model to allocate the tasks to different UAVs.
We also exploit another attention based policy network in our lower-level DRL model to construct the route for each UAV, with the objective to maximize the number of executed tasks.
arXiv Detail & Related papers (2022-08-04T04:35:53Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Jamming-Resilient Path Planning for Multiple UAVs via Deep Reinforcement
Learning [1.2330326247154968]
Unmanned aerial vehicles (UAVs) are expected to be an integral part of wireless networks.
In this paper, we aim to find collision-free paths for multiple cellular-connected UAVs.
We propose an offline temporal difference (TD) learning algorithm with online signal-to-interference-plus-noise ratio mapping to solve the problem.
arXiv Detail & Related papers (2021-04-09T16:52:33Z) - Mobile Cellular-Connected UAVs: Reinforcement Learning for Sky Limits [71.28712804110974]
We propose a general novel multi-armed bandit (MAB) algorithm to reduce disconnectivity time, handover rate, and energy consumption of UAV.
We show how each of these performance indicators (PIs) is improved by adopting a proper range of corresponding learning parameter.
arXiv Detail & Related papers (2020-09-21T12:35:23Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
We design a navigation policy for multiple unmanned aerial vehicles (UAVs) where mobile base stations (BSs) are deployed.
We incorporate different contextual information such as energy and age of information (AoI) constraints to ensure the data freshness at the ground BS.
By applying the proposed trained model, an effective real-time trajectory policy for the UAV-BSs captures the observable network states over time.
arXiv Detail & Related papers (2020-02-21T07:29:15Z) - Multi-Vehicle Routing Problems with Soft Time Windows: A Multi-Agent
Reinforcement Learning Approach [9.717648122961483]
Multi-vehicle routing problem with soft time windows (MVRPSTW) is an indispensable constituent in urban logistics systems.
Traditional methods incur the dilemma between computational efficiency and solution quality.
We propose a novel reinforcement learning algorithm called the Multi-Agent Attention Model that can solve routing problem instantly benefit from lengthy offline training.
arXiv Detail & Related papers (2020-02-13T14:26:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.