Mobile Cellular-Connected UAVs: Reinforcement Learning for Sky Limits
- URL: http://arxiv.org/abs/2009.09815v1
- Date: Mon, 21 Sep 2020 12:35:23 GMT
- Title: Mobile Cellular-Connected UAVs: Reinforcement Learning for Sky Limits
- Authors: M. Mahdi Azari, Atefeh Hajijamali Arani, Fernando Rosas
- Abstract summary: We propose a general novel multi-armed bandit (MAB) algorithm to reduce disconnectivity time, handover rate, and energy consumption of UAV.
We show how each of these performance indicators (PIs) is improved by adopting a proper range of corresponding learning parameter.
- Score: 71.28712804110974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A cellular-connected unmanned aerial vehicle (UAV)faces several key
challenges concerning connectivity and energy efficiency. Through a
learning-based strategy, we propose a general novel multi-armed bandit (MAB)
algorithm to reduce disconnectivity time, handover rate, and energy consumption
of UAV by taking into account its time of task completion. By formulating the
problem as a function of UAV's velocity, we show how each of these performance
indicators (PIs) is improved by adopting a proper range of corresponding
learning parameter, e.g. 50% reduction in HO rate as compared to a blind
strategy. However, results reveal that the optimal combination of the learning
parameters depends critically on any specific application and the weights of
PIs on the final objective function.
Related papers
- UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs [21.195346908715972]
Unmanned aerial vehicles present an alternative means to offload data traffic from terrestrial BSs.
This paper presents a novel approach to efficiently serve multiple UAVs for data offloading from terrestrial BSs.
arXiv Detail & Related papers (2024-02-05T12:36:08Z) - Federated Learning in UAV-Enhanced Networks: Joint Coverage and
Convergence Time Optimization [16.265792031520945]
Federated learning (FL) involves several devices that collaboratively train a shared model without transferring their local data.
FL reduces the communication overhead, making it a promising learning method in UAV-enhanced wireless networks with scarce energy resources.
Despite the potential, implementing FL in UAV-enhanced networks is challenging, as conventional UAV placement methods that maximize coverage increase the FL delay.
arXiv Detail & Related papers (2023-08-31T17:50:54Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - Joint Path planning and Power Allocation of a Cellular-Connected UAV
using Apprenticeship Learning via Deep Inverse Reinforcement Learning [7.760962597460447]
This paper investigates an interference-aware joint path planning and power allocation mechanism for a cellular-connected unmanned aerial vehicle (UAV) in a sparse suburban environment.
The UAV aims to maximize its uplink throughput and minimize the level of interference to the ground user equipment (UEs) connected to the neighbor cellular BSs.
An apprenticeship learning method is utilized via inverse reinforcement learning (IRL) based on both Q-learning and deep reinforcement learning (DRL)
arXiv Detail & Related papers (2023-06-15T20:50:05Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
Federated edge learning (FEEL) enables privacy-preserving model training through periodic communication between edge devices and the server.
Unmanned Aerial Vehicle (UAV)mounted edge devices are particularly advantageous for FEEL due to their flexibility and mobility in efficient data collection.
arXiv Detail & Related papers (2023-06-05T16:01:33Z) - Muti-Agent Proximal Policy Optimization For Data Freshness in
UAV-assisted Networks [4.042622147977782]
We focus on the case where the collected data is time-sensitive, and it is critical to maintain its timeliness.
Our objective is to optimally design the UAVs' trajectories and the subsets of visited IoT devices such as the global Age-of-Updates (AoU) is minimized.
arXiv Detail & Related papers (2023-03-15T15:03:09Z) - Federated Learning for UAV Swarms Under Class Imbalance and Power
Consumption Constraints [6.995852507959362]
It is imperative to investigate the performance of UAV utilization while considering their design limitations.
This paper investigates the deployment of UAV swarms when each UAV carries a machine learning classification task.
arXiv Detail & Related papers (2021-08-23T16:10:14Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
Unmanned aerial vehicle (UAV) swarms must exploit machine learning (ML) in order to execute various tasks.
In this paper, a novel framework is proposed to implement distributed learning (FL) algorithms within a UAV swarm.
arXiv Detail & Related papers (2020-02-19T14:04:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.