Unsupervised Domain Adaptation for Monocular 3D Object Detection via
Self-Training
- URL: http://arxiv.org/abs/2204.11590v2
- Date: Wed, 27 Apr 2022 02:08:21 GMT
- Title: Unsupervised Domain Adaptation for Monocular 3D Object Detection via
Self-Training
- Authors: Zhenyu Li, Zehui Chen, Ang Li, Liangji Fang, Qinhong Jiang, Xianming
Liu, Junjun Jiang
- Abstract summary: We propose STMono3D, a new self-teaching framework for unsupervised domain adaptation on Mono3D.
We develop a teacher-student paradigm to generate adaptive pseudo labels on the target domain.
STMono3D achieves remarkable performance on all evaluated datasets and even surpasses fully supervised results on the KITTI 3D object detection dataset.
- Score: 57.25828870799331
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monocular 3D object detection (Mono3D) has achieved unprecedented success
with the advent of deep learning techniques and emerging large-scale autonomous
driving datasets. However, drastic performance degradation remains an
unwell-studied challenge for practical cross-domain deployment as the lack of
labels on the target domain. In this paper, we first comprehensively
investigate the significant underlying factor of the domain gap in Mono3D,
where the critical observation is a depth-shift issue caused by the geometric
misalignment of domains. Then, we propose STMono3D, a new self-teaching
framework for unsupervised domain adaptation on Mono3D. To mitigate the
depth-shift, we introduce the geometry-aligned multi-scale training strategy to
disentangle the camera parameters and guarantee the geometry consistency of
domains. Based on this, we develop a teacher-student paradigm to generate
adaptive pseudo labels on the target domain. Benefiting from the end-to-end
framework that provides richer information of the pseudo labels, we propose the
quality-aware supervision strategy to take instance-level pseudo confidences
into account and improve the effectiveness of the target-domain training
process. Moreover, the positive focusing training strategy and dynamic
threshold are proposed to handle tremendous FN and FP pseudo samples. STMono3D
achieves remarkable performance on all evaluated datasets and even surpasses
fully supervised results on the KITTI 3D object detection dataset. To the best
of our knowledge, this is the first study to explore effective UDA methods for
Mono3D.
Related papers
- CMDA: Cross-Modal and Domain Adversarial Adaptation for LiDAR-Based 3D
Object Detection [14.063365469339812]
LiDAR-based 3D Object Detection methods often do not generalize well to target domains outside the source (or training) data distribution.
We introduce a novel unsupervised domain adaptation (UDA) method, called CMDA, which leverages visual semantic cues from an image modality.
We also introduce a self-training-based learning strategy, wherein a model is adversarially trained to generate domain-invariant features.
arXiv Detail & Related papers (2024-03-06T14:12:38Z) - Domain Generalization of 3D Object Detection by Density-Resampling [14.510085711178217]
Point-cloud-based 3D object detection suffers from performance degradation when encountering data with novel domain gaps.
We propose an SDG method to improve the generalizability of 3D object detection to unseen target domains.
Our work introduces a novel data augmentation method and contributes a new multi-task learning strategy in the methodology.
arXiv Detail & Related papers (2023-11-17T20:01:29Z) - 3D Adversarial Augmentations for Robust Out-of-Domain Predictions [115.74319739738571]
We focus on improving the generalization to out-of-domain data.
We learn a set of vectors that deform the objects in an adversarial fashion.
We perform adversarial augmentation by applying the learned sample-independent vectors to the available objects when training a model.
arXiv Detail & Related papers (2023-08-29T17:58:55Z) - SSDA3D: Semi-supervised Domain Adaptation for 3D Object Detection from
Point Cloud [125.9472454212909]
We present a novel Semi-Supervised Domain Adaptation method for 3D object detection (SSDA3D)
SSDA3D includes an Inter-domain Adaptation stage and an Intra-domain Generalization stage.
Experiments show that, with only 10% labeled target data, our SSDA3D can surpass the fully-supervised oracle model with 100% target label.
arXiv Detail & Related papers (2022-12-06T09:32:44Z) - Towards Model Generalization for Monocular 3D Object Detection [57.25828870799331]
We present an effective unified camera-generalized paradigm (CGP) for Mono3D object detection.
We also propose the 2D-3D geometry-consistent object scaling strategy (GCOS) to bridge the gap via an instance-level augment.
Our method called DGMono3D achieves remarkable performance on all evaluated datasets and surpasses the SoTA unsupervised domain adaptation scheme.
arXiv Detail & Related papers (2022-05-23T23:05:07Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
Deep learning-based 3D object detection has achieved unprecedented success with the advent of large-scale autonomous driving datasets.
Existing 3D domain adaptive detection methods often assume prior access to the target domain annotations, which is rarely feasible in the real world.
We study a more realistic setting, unsupervised 3D domain adaptive detection, which only utilizes source domain annotations.
arXiv Detail & Related papers (2021-07-23T17:19:23Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds.
Our ST3D achieves state-of-the-art performance on all evaluated datasets and even surpasses fully supervised results on KITTI 3D object detection benchmark.
arXiv Detail & Related papers (2021-03-09T10:51:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.