Towards Model Generalization for Monocular 3D Object Detection
- URL: http://arxiv.org/abs/2205.11664v1
- Date: Mon, 23 May 2022 23:05:07 GMT
- Title: Towards Model Generalization for Monocular 3D Object Detection
- Authors: Zhenyu Li, Zehui Chen, Ang Li, Liangji Fang, Qinhong Jiang, Xianming
Liu, Junjun Jiang
- Abstract summary: We present an effective unified camera-generalized paradigm (CGP) for Mono3D object detection.
We also propose the 2D-3D geometry-consistent object scaling strategy (GCOS) to bridge the gap via an instance-level augment.
Our method called DGMono3D achieves remarkable performance on all evaluated datasets and surpasses the SoTA unsupervised domain adaptation scheme.
- Score: 57.25828870799331
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monocular 3D object detection (Mono3D) has achieved tremendous improvements
with emerging large-scale autonomous driving datasets and the rapid development
of deep learning techniques. However, caused by severe domain gaps (e.g., the
field of view (FOV), pixel size, and object size among datasets), Mono3D
detectors have difficulty in generalization, leading to drastic performance
degradation on unseen domains. To solve these issues, we combine the
position-invariant transform and multi-scale training with the pixel-size depth
strategy to construct an effective unified camera-generalized paradigm (CGP).
It fully considers discrepancies in the FOV and pixel size of images captured
by different cameras. Moreover, we further investigate the obstacle in
quantitative metrics when cross-dataset inference through an exhaustive
systematic study. We discern that the size bias of prediction leads to a
colossal failure. Hence, we propose the 2D-3D geometry-consistent object
scaling strategy (GCOS) to bridge the gap via an instance-level augment. Our
method called DGMono3D achieves remarkable performance on all evaluated
datasets and surpasses the SoTA unsupervised domain adaptation scheme even
without utilizing data on the target domain.
Related papers
- Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
We build the first unified multi-modal 3D object detection benchmark MM- Omni3D and extend the aforementioned monocular detector to its multi-modal version.
We name the designed monocular and multi-modal detectors as UniMODE and MM-UniMODE, respectively.
arXiv Detail & Related papers (2024-02-28T18:59:31Z) - Towards Domain Generalization for Multi-view 3D Object Detection in
Bird-Eye-View [11.958753088613637]
We first analyze the causes of the domain gap for the MV3D-Det task.
To acquire a robust depth prediction, we propose to decouple the depth estimation from intrinsic parameters of the camera.
We modify the focal length values to create multiple pseudo-domains and construct an adversarial training loss to encourage the feature representation to be more domain-agnostic.
arXiv Detail & Related papers (2023-03-03T02:59:13Z) - Unsupervised Domain Adaptation for Monocular 3D Object Detection via
Self-Training [57.25828870799331]
We propose STMono3D, a new self-teaching framework for unsupervised domain adaptation on Mono3D.
We develop a teacher-student paradigm to generate adaptive pseudo labels on the target domain.
STMono3D achieves remarkable performance on all evaluated datasets and even surpasses fully supervised results on the KITTI 3D object detection dataset.
arXiv Detail & Related papers (2022-04-25T12:23:07Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
A differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information.
Our method yields the best performance compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
arXiv Detail & Related papers (2022-04-02T03:48:03Z) - Geometry-aware data augmentation for monocular 3D object detection [18.67567745336633]
This paper focuses on monocular 3D object detection, one of the essential modules in autonomous driving systems.
A key challenge is that the depth recovery problem is ill-posed in monocular data.
We conduct a thorough analysis to reveal how existing methods fail to robustly estimate depth when different geometry shifts occur.
We convert the aforementioned manipulations into four corresponding 3D-aware data augmentation techniques.
arXiv Detail & Related papers (2021-04-12T23:12:48Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object
Detection [69.68263074432224]
We present a novel framework named ZoomNet for stereo imagery-based 3D detection.
The pipeline of ZoomNet begins with an ordinary 2D object detection model which is used to obtain pairs of left-right bounding boxes.
To further exploit the abundant texture cues in RGB images for more accurate disparity estimation, we introduce a conceptually straight-forward module -- adaptive zooming.
arXiv Detail & Related papers (2020-03-01T17:18:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.