Do Users Benefit From Interpretable Vision? A User Study, Baseline, And
Dataset
- URL: http://arxiv.org/abs/2204.11642v1
- Date: Mon, 25 Apr 2022 13:20:06 GMT
- Title: Do Users Benefit From Interpretable Vision? A User Study, Baseline, And
Dataset
- Authors: Leon Sixt, Martin Schuessler, Oana-Iuliana Popescu, Philipp Wei{\ss},
Tim Landgraf
- Abstract summary: We conduct a user study to test how a baseline explanation technique performs against concept-based and counterfactual explanations.
In a study, we assess if participants can identify the relevant set of attributes compared to the ground-truth.
Counterfactual explanations from an invertible neural network performed similarly as the baseline.
- Score: 8.863479255829139
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A variety of methods exist to explain image classification models. However,
whether they provide any benefit to users over simply comparing various inputs
and the model's respective predictions remains unclear. We conducted a user
study (N=240) to test how such a baseline explanation technique performs
against concept-based and counterfactual explanations. To this end, we
contribute a synthetic dataset generator capable of biasing individual
attributes and quantifying their relevance to the model. In a study, we assess
if participants can identify the relevant set of attributes compared to the
ground-truth. Our results show that the baseline outperformed concept-based
explanations. Counterfactual explanations from an invertible neural network
performed similarly as the baseline. Still, they allowed users to identify some
attributes more accurately. Our results highlight the importance of measuring
how well users can reason about biases of a model, rather than solely relying
on technical evaluations or proxy tasks. We open-source our study and dataset
so it can serve as a blue-print for future studies. For code see,
https://github.com/berleon/do_users_benefit_from_interpretable_vision
Related papers
- ConceptDrift: Uncovering Biases through the Lens of Foundation Models [5.025665239455297]
We show that ConceptDrift can be scaled to automatically identify biases in datasets without human prior knowledge.
We propose two bias identification evaluation protocols to fill the gap in the previous work and show that our method significantly improves over SoTA methods.
Our method is not bounded to a single modality, and we empirically validate it both on image (Waterbirds, CelebA, ImageNet, and text datasets (CivilComments))
arXiv Detail & Related papers (2024-10-24T17:59:16Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - What if you said that differently?: How Explanation Formats Affect Human Feedback Efficacy and User Perception [53.4840989321394]
We analyze the effect of rationales generated by QA models to support their answers.
We present users with incorrect answers and corresponding rationales in various formats.
We measure the effectiveness of this feedback in patching these rationales through in-context learning.
arXiv Detail & Related papers (2023-11-16T04:26:32Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Gender Biases in Automatic Evaluation Metrics for Image Captioning [87.15170977240643]
We conduct a systematic study of gender biases in model-based evaluation metrics for image captioning tasks.
We demonstrate the negative consequences of using these biased metrics, including the inability to differentiate between biased and unbiased generations.
We present a simple and effective way to mitigate the metric bias without hurting the correlations with human judgments.
arXiv Detail & Related papers (2023-05-24T04:27:40Z) - Overlooked factors in concept-based explanations: Dataset choice,
concept learnability, and human capability [25.545486537295144]
Concept-based interpretability methods aim to explain deep neural network model predictions using a predefined set of semantic concepts.
Despite their popularity, they suffer from limitations that are not well-understood and articulated by the literature.
We analyze three commonly overlooked factors in concept-based explanations.
arXiv Detail & Related papers (2022-07-20T01:59:39Z) - Certifying Robustness to Programmable Data Bias in Decision Trees [12.060443368097102]
We certify that models produced by a learning learner are pointwise-robust to potential dataset biases.
Our approach allows specifying bias models across a variety of dimensions.
We evaluate our approach on datasets commonly used in the fairness literature.
arXiv Detail & Related papers (2021-10-08T20:15:17Z) - Contrastive Explanations for Model Interpretability [77.92370750072831]
We propose a methodology to produce contrastive explanations for classification models.
Our method is based on projecting model representation to a latent space.
Our findings shed light on the ability of label-contrastive explanations to provide a more accurate and finer-grained interpretability of a model's decision.
arXiv Detail & Related papers (2021-03-02T00:36:45Z) - Leakage-Adjusted Simulatability: Can Models Generate Non-Trivial
Explanations of Their Behavior in Natural Language? [86.60613602337246]
We introduce a leakage-adjusted simulatability (LAS) metric for evaluating NL explanations.
LAS measures how well explanations help an observer predict a model's output, while controlling for how explanations can directly leak the output.
We frame explanation generation as a multi-agent game and optimize explanations for simulatability while penalizing label leakage.
arXiv Detail & Related papers (2020-10-08T16:59:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.