Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability
- URL: http://arxiv.org/abs/2306.08780v1
- Date: Wed, 14 Jun 2023 23:24:01 GMT
- Title: Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability
- Authors: E. Zhixuan Zeng, Hayden Gunraj, Sheldon Fernandez, Alexander Wong
- Abstract summary: Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
- Score: 70.60433013657693
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explainability plays a crucial role in providing a more comprehensive
understanding of deep learning models' behaviour. This allows for thorough
validation of the model's performance, ensuring that its decisions are based on
relevant visual indicators and not biased toward irrelevant patterns existing
in training data. However, existing methods provide only instance-level
explainability, which requires manual analysis of each sample. Such manual
review is time-consuming and prone to human biases. To address this issue, the
concept of second-order explainable AI (SOXAI) was recently proposed to extend
explainable AI (XAI) from the instance level to the dataset level. SOXAI
automates the analysis of the connections between quantitative explanations and
dataset biases by identifying prevalent concepts. In this work, we explore the
use of this higher-level interpretation of a deep neural network's behaviour to
allows us to "explain the explainability" for actionable insights.
Specifically, we demonstrate for the first time, via example classification and
segmentation cases, that eliminating irrelevant concepts from the training set
based on actionable insights from SOXAI can enhance a model's performance.
Related papers
- XForecast: Evaluating Natural Language Explanations for Time Series Forecasting [72.57427992446698]
Time series forecasting aids decision-making, especially for stakeholders who rely on accurate predictions.
Traditional explainable AI (XAI) methods, which underline feature or temporal importance, often require expert knowledge.
evaluating forecast NLEs is difficult due to the complex causal relationships in time series data.
arXiv Detail & Related papers (2024-10-18T05:16:39Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - Predictability and Comprehensibility in Post-Hoc XAI Methods: A
User-Centered Analysis [6.606409729669314]
Post-hoc explainability methods aim to clarify predictions of black-box machine learning models.
We conduct a user study to evaluate comprehensibility and predictability in two widely used tools: LIME and SHAP.
We find that the comprehensibility of SHAP is significantly reduced when explanations are provided for samples near a model's decision boundary.
arXiv Detail & Related papers (2023-09-21T11:54:20Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
We define explainability through the interpretability of the explanations and the faithfulness of the explainability model in the field of process outcome prediction.
This paper contributes a set of guidelines named X-MOP which allows selecting the appropriate model based on the event log specifications.
arXiv Detail & Related papers (2022-03-30T05:59:50Z) - Explaining, Evaluating and Enhancing Neural Networks' Learned
Representations [2.1485350418225244]
We show how explainability can be an aid, rather than an obstacle, towards better and more efficient representations.
We employ such attributions to define two novel scores for evaluating the informativeness and the disentanglement of latent embeddings.
We show that adopting our proposed scores as constraints during the training of a representation learning task improves the downstream performance of the model.
arXiv Detail & Related papers (2022-02-18T19:00:01Z) - RELAX: Representation Learning Explainability [10.831313203043514]
We propose RELAX, which is the first approach for attribution-based explanations of representations.
ReLAX explains representations by measuring similarities in the representation space between an input and masked out versions of itself.
We provide theoretical interpretations of RELAX and conduct a novel analysis of feature extractors trained using supervised and unsupervised learning.
arXiv Detail & Related papers (2021-12-19T14:51:31Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
We review recent works in the direction to attain Explainable Reinforcement Learning (XRL)
In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box.
arXiv Detail & Related papers (2020-08-15T10:11:42Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.