Incorporating Explicit Knowledge in Pre-trained Language Models for
Passage Re-ranking
- URL: http://arxiv.org/abs/2204.11673v1
- Date: Mon, 25 Apr 2022 14:07:28 GMT
- Title: Incorporating Explicit Knowledge in Pre-trained Language Models for
Passage Re-ranking
- Authors: Qian Dong, Yiding Liu, Suqi Cheng, Shuaiqiang Wang, Zhicong Cheng,
Shuzi Niu, Dawei Yin
- Abstract summary: We propose a novel knowledge graph distillation method and obtain a knowledge meta graph as the bridge between query and passage.
To align both kinds of embedding in the latent space, we employ PLM as text encoder and graph neural network over knowledge meta graph as knowledge encoder.
- Score: 32.22697200984185
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Passage re-ranking is to obtain a permutation over the candidate passage set
from retrieval stage. Re-rankers have been boomed by Pre-trained Language
Models (PLMs) due to their overwhelming advantages in natural language
understanding. However, existing PLM based re-rankers may easily suffer from
vocabulary mismatch and lack of domain specific knowledge. To alleviate these
problems, explicit knowledge contained in knowledge graph is carefully
introduced in our work. Specifically, we employ the existing knowledge graph
which is incomplete and noisy, and first apply it in passage re-ranking task.
To leverage a reliable knowledge, we propose a novel knowledge graph
distillation method and obtain a knowledge meta graph as the bridge between
query and passage. To align both kinds of embedding in the latent space, we
employ PLM as text encoder and graph neural network over knowledge meta graph
as knowledge encoder. Besides, a novel knowledge injector is designed for the
dynamic interaction between text and knowledge encoder. Experimental results
demonstrate the effectiveness of our method especially in queries requiring
in-depth domain knowledge.
Related papers
- Knowledge Graph-Enhanced Large Language Models via Path Selection [58.228392005755026]
Large Language Models (LLMs) have shown unprecedented performance in various real-world applications.
LLMs are known to generate factually inaccurate outputs, a.k.a. the hallucination problem.
We propose a principled framework KELP with three stages to handle the above problems.
arXiv Detail & Related papers (2024-06-19T21:45:20Z) - Infusing Knowledge into Large Language Models with Contextual Prompts [5.865016596356753]
We propose a simple yet generalisable approach for knowledge infusion by generating prompts from the context in the input text.
Our experiments show the effectiveness of our approach which we evaluate by probing the fine-tuned LLMs.
arXiv Detail & Related papers (2024-03-03T11:19:26Z) - UNTER: A Unified Knowledge Interface for Enhancing Pre-trained Language
Models [100.4659557650775]
We propose a UNified knowledge inTERface, UNTER, to provide a unified perspective to exploit both structured knowledge and unstructured knowledge.
With both forms of knowledge injected, UNTER gains continuous improvements on a series of knowledge-driven NLP tasks.
arXiv Detail & Related papers (2023-05-02T17:33:28Z) - DictBERT: Dictionary Description Knowledge Enhanced Language Model
Pre-training via Contrastive Learning [18.838291575019504]
Pre-trained language models (PLMs) are shown to be lacking in knowledge when dealing with knowledge driven tasks.
We propose textbfDictBERT, a novel approach that enhances PLMs with dictionary knowledge.
We evaluate our approach on a variety of knowledge driven and language understanding tasks, including NER, relation extraction, CommonsenseQA, OpenBookQA and GLUE.
arXiv Detail & Related papers (2022-08-01T06:43:19Z) - TegTok: Augmenting Text Generation via Task-specific and Open-world
Knowledge [83.55215993730326]
We propose augmenting TExt Generation via Task-specific and Open-world Knowledge (TegTok) in a unified framework.
Our model selects knowledge entries from two types of knowledge sources through dense retrieval and then injects them into the input encoding and output decoding stages respectively.
arXiv Detail & Related papers (2022-03-16T10:37:59Z) - Ontology-enhanced Prompt-tuning for Few-shot Learning [41.51144427728086]
Few-shot Learning is aimed to make predictions based on a limited number of samples.
Structured data such as knowledge graphs and ontology libraries has been leveraged to benefit the few-shot setting in various tasks.
arXiv Detail & Related papers (2022-01-27T05:41:36Z) - CoLAKE: Contextualized Language and Knowledge Embedding [81.90416952762803]
We propose the Contextualized Language and Knowledge Embedding (CoLAKE)
CoLAKE jointly learns contextualized representation for both language and knowledge with the extended objective.
We conduct experiments on knowledge-driven tasks, knowledge probing tasks, and language understanding tasks.
arXiv Detail & Related papers (2020-10-01T11:39:32Z) - CokeBERT: Contextual Knowledge Selection and Embedding towards Enhanced
Pre-Trained Language Models [103.18329049830152]
We propose a novel framework named Coke to dynamically select contextual knowledge and embed knowledge context according to textual context.
Our experimental results show that Coke outperforms various baselines on typical knowledge-driven NLP tasks.
Coke can describe the semantics of text-related knowledge in a more interpretable form than the conventional PLMs.
arXiv Detail & Related papers (2020-09-29T12:29:04Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z) - Knowledge-graph based Proactive Dialogue Generation with Improved
Meta-Learning [0.0]
We propose a knowledge graph based proactive dialogue generation model (KgDg) with three components.
For knowledge triplets embedding and selection, we formulate it as a problem of sentence embedding to better capture semantic information.
Our improved MAML algorithm is capable of learning general features from a limited number of knowledge graphs.
arXiv Detail & Related papers (2020-04-19T08:41:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.