Knowledge Graph-Enhanced Large Language Models via Path Selection
- URL: http://arxiv.org/abs/2406.13862v1
- Date: Wed, 19 Jun 2024 21:45:20 GMT
- Title: Knowledge Graph-Enhanced Large Language Models via Path Selection
- Authors: Haochen Liu, Song Wang, Yaochen Zhu, Yushun Dong, Jundong Li,
- Abstract summary: Large Language Models (LLMs) have shown unprecedented performance in various real-world applications.
LLMs are known to generate factually inaccurate outputs, a.k.a. the hallucination problem.
We propose a principled framework KELP with three stages to handle the above problems.
- Score: 58.228392005755026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have shown unprecedented performance in various real-world applications. However, they are known to generate factually inaccurate outputs, a.k.a. the hallucination problem. In recent years, incorporating external knowledge extracted from Knowledge Graphs (KGs) has become a promising strategy to improve the factual accuracy of LLM-generated outputs. Nevertheless, most existing explorations rely on LLMs themselves to perform KG knowledge extraction, which is highly inflexible as LLMs can only provide binary judgment on whether a certain knowledge (e.g., a knowledge path in KG) should be used. In addition, LLMs tend to pick only knowledge with direct semantic relationship with the input text, while potentially useful knowledge with indirect semantics can be ignored. In this work, we propose a principled framework KELP with three stages to handle the above problems. Specifically, KELP is able to achieve finer granularity of flexible knowledge extraction by generating scores for knowledge paths with input texts via latent semantic matching. Meanwhile, knowledge paths with indirect semantic relationships with the input text can also be considered via trained encoding between the selected paths in KG and the input text. Experiments on real-world datasets validate the effectiveness of KELP.
Related papers
- Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.
This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.
Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - KaLM: Knowledge-aligned Autoregressive Language Modeling via Dual-view Knowledge Graph Contrastive Learning [74.21524111840652]
This paper proposes textbfKaLM, a textitKnowledge-aligned Language Modeling approach.
It fine-tunes autoregressive large language models to align with KG knowledge via the joint objective of explicit knowledge alignment and implicit knowledge alignment.
Notably, our method achieves a significant performance boost in evaluations of knowledge-driven tasks.
arXiv Detail & Related papers (2024-12-06T11:08:24Z) - Can LLMs be Good Graph Judger for Knowledge Graph Construction? [33.958327252291]
In this paper, we propose GraphJudger, a knowledge graph construction framework to address the aforementioned challenges.
We introduce three innovative modules in our method, which are entity-centric iterative text denoising, knowledge aware instruction tuning and graph judgement.
Experiments conducted on two general text-graph pair datasets and one domain-specific text-graph pair dataset show superior performances compared to baseline methods.
arXiv Detail & Related papers (2024-11-26T12:46:57Z) - Ontology Population using LLMs [0.9894420655516563]
Knowledge graphs (KGs) are increasingly utilized for data integration, representation, and visualization.
LLMs offer promising capabilities for such tasks, excelling in natural language understanding and content generation.
This study investigates LLM effectiveness for the KG population, focusing on the Enslaved.org Hub Ontology.
arXiv Detail & Related papers (2024-11-03T15:39:20Z) - KnowGPT: Knowledge Graph based Prompting for Large Language Models [28.605161596626875]
We introduce a Knowledge Graph based PrompTing framework, namely KnowGPT, to enhance Large Language Models with domain knowledge.
KnowGPT contains a knowledge extraction module to extract the most informative knowledge from KGs, and a context-aware prompt construction module to automatically convert extracted knowledge into effective prompts.
KnowGPT achieves a 92.6% accuracy on OpenbookQA leaderboard, comparable to human-level performance.
arXiv Detail & Related papers (2023-12-11T07:56:25Z) - Knowledge Rumination for Pre-trained Language Models [77.55888291165462]
We propose a new paradigm dubbed Knowledge Rumination to help the pre-trained language model utilize related latent knowledge without retrieving it from the external corpus.
We apply the proposed knowledge rumination to various language models, including RoBERTa, DeBERTa, and GPT-3.
arXiv Detail & Related papers (2023-05-15T15:47:09Z) - Structured Knowledge Grounding for Question Answering [0.23068481501673416]
We propose to leverage the language and knowledge for knowledge based question-answering with flexibility, breadth of coverage and structured reasoning.
Specifically, we devise a knowledge construction method that retrieves the relevant context with a dynamic hop.
And we devise a deep fusion mechanism to further bridge the information exchanging bottleneck between the language and the knowledge.
arXiv Detail & Related papers (2022-09-17T08:48:50Z) - BertNet: Harvesting Knowledge Graphs with Arbitrary Relations from
Pretrained Language Models [65.51390418485207]
We propose a new approach of harvesting massive KGs of arbitrary relations from pretrained LMs.
With minimal input of a relation definition, the approach efficiently searches in the vast entity pair space to extract diverse accurate knowledge.
We deploy the approach to harvest KGs of over 400 new relations from different LMs.
arXiv Detail & Related papers (2022-06-28T19:46:29Z) - CoLAKE: Contextualized Language and Knowledge Embedding [81.90416952762803]
We propose the Contextualized Language and Knowledge Embedding (CoLAKE)
CoLAKE jointly learns contextualized representation for both language and knowledge with the extended objective.
We conduct experiments on knowledge-driven tasks, knowledge probing tasks, and language understanding tasks.
arXiv Detail & Related papers (2020-10-01T11:39:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.