Conversational Question Answering on Heterogeneous Sources
- URL: http://arxiv.org/abs/2204.11677v2
- Date: Fri, 30 Jun 2023 12:32:03 GMT
- Title: Conversational Question Answering on Heterogeneous Sources
- Authors: Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum
- Abstract summary: This paper addresses the novel issue of jointly tapping into all of these together, this way boosting answer coverage and confidence.
We present CONVINSE, an end-to-end pipeline for ConvQA over heterogeneous sources, operating in three stages.
We construct and release the first benchmark, ConvMix, for ConvQA over heterogeneous sources, comprising 3000 real-user conversations with 16000 questions, along with entity annotations, completed question utterances, and question paraphrases.
- Score: 29.316760645668346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational question answering (ConvQA) tackles sequential information
needs where contexts in follow-up questions are left implicit. Current ConvQA
systems operate over homogeneous sources of information: either a knowledge
base (KB), or a text corpus, or a collection of tables. This paper addresses
the novel issue of jointly tapping into all of these together, this way
boosting answer coverage and confidence. We present CONVINSE, an end-to-end
pipeline for ConvQA over heterogeneous sources, operating in three stages: i)
learning an explicit structured representation of an incoming question and its
conversational context, ii) harnessing this frame-like representation to
uniformly capture relevant evidences from KB, text, and tables, and iii)
running a fusion-in-decoder model to generate the answer. We construct and
release the first benchmark, ConvMix, for ConvQA over heterogeneous sources,
comprising 3000 real-user conversations with 16000 questions, along with entity
annotations, completed question utterances, and question paraphrases.
Experiments demonstrate the viability and advantages of our method, compared to
state-of-the-art baselines.
Related papers
- Evidence Contextualization and Counterfactual Attribution for Conversational QA over Heterogeneous Data with RAG Systems [4.143039012104666]
Retrieval Augmented Generation (RAG) works as a backbone for interacting with an enterprise's own data via Conversational Question Answering (ConvQA)
In this work, we demonstrate RAGONITE, a RAG system that remedies the above concerns by: (i) contextualizing evidence with source metadata and surrounding text; and (ii) computing counterfactual attribution.
arXiv Detail & Related papers (2024-12-13T21:28:17Z) - Exploring Hint Generation Approaches in Open-Domain Question Answering [16.434748534272014]
We introduce a novel context preparation approach called HINTQA.
Unlike traditional methods, HINTQA prompts LLMs to produce hints about potential answers for the question.
We demonstrate that hints enhance the accuracy of answers more than retrieved and generated contexts.
arXiv Detail & Related papers (2024-09-24T13:50:32Z) - Diversity Enhanced Narrative Question Generation for Storybooks [4.043005183192124]
We introduce a multi-question generation model (mQG) capable of generating multiple, diverse, and answerable questions.
To validate the answerability of the generated questions, we employ a SQuAD2.0 fine-tuned question answering model.
mQG shows promising results across various evaluation metrics, among strong baselines.
arXiv Detail & Related papers (2023-10-25T08:10:04Z) - Open-Set Knowledge-Based Visual Question Answering with Inference Paths [79.55742631375063]
The purpose of Knowledge-Based Visual Question Answering (KB-VQA) is to provide a correct answer to the question with the aid of external knowledge bases.
We propose a new retriever-ranker paradigm of KB-VQA, Graph pATH rankER (GATHER for brevity)
Specifically, it contains graph constructing, pruning, and path-level ranking, which not only retrieves accurate answers but also provides inference paths that explain the reasoning process.
arXiv Detail & Related papers (2023-10-12T09:12:50Z) - HPE:Answering Complex Questions over Text by Hybrid Question Parsing and
Execution [92.69684305578957]
We propose a framework of question parsing and execution on textual QA.
The proposed framework can be viewed as a top-down question parsing followed by a bottom-up answer backtracking.
Our experiments on MuSiQue, 2WikiQA, HotpotQA, and NQ show that the proposed parsing and hybrid execution framework outperforms existing approaches in supervised, few-shot, and zero-shot settings.
arXiv Detail & Related papers (2023-05-12T22:37:06Z) - Open-domain Question Answering via Chain of Reasoning over Heterogeneous
Knowledge [82.5582220249183]
We propose a novel open-domain question answering (ODQA) framework for answering single/multi-hop questions across heterogeneous knowledge sources.
Unlike previous methods that solely rely on the retriever for gathering all evidence in isolation, our intermediary performs a chain of reasoning over the retrieved set.
Our system achieves competitive performance on two ODQA datasets, OTT-QA and NQ, against tables and passages from Wikipedia.
arXiv Detail & Related papers (2022-10-22T03:21:32Z) - Discourse Analysis via Questions and Answers: Parsing Dependency
Structures of Questions Under Discussion [57.43781399856913]
This work adopts the linguistic framework of Questions Under Discussion (QUD) for discourse analysis.
We characterize relationships between sentences as free-form questions, in contrast to exhaustive fine-grained questions.
We develop the first-of-its-kind QUD that derives a dependency structure of questions over full documents.
arXiv Detail & Related papers (2022-10-12T03:53:12Z) - SituatedQA: Incorporating Extra-Linguistic Contexts into QA [7.495151447459443]
We introduce SituatedQA, an open-retrieval QA dataset where systems must produce the correct answer to a question given the temporal or geographical context.
We find that a significant proportion of information seeking questions have context-dependent answers.
Our study shows that existing models struggle with producing answers that are frequently updated or from uncommon locations.
arXiv Detail & Related papers (2021-09-13T17:53:21Z) - QAConv: Question Answering on Informative Conversations [85.2923607672282]
We focus on informative conversations including business emails, panel discussions, and work channels.
In total, we collect 34,204 QA pairs, including span-based, free-form, and unanswerable questions.
arXiv Detail & Related papers (2021-05-14T15:53:05Z) - FeTaQA: Free-form Table Question Answering [33.018256483762386]
We introduce FeTaQA, a new dataset with 10K Wikipedia-based table, question, free-form answer, supporting table cells pairs.
FeTaQA yields a more challenging table question answering setting because it requires generating free-form text answers after retrieval, inference, and integration of multiple discontinuous facts from a structured knowledge source.
arXiv Detail & Related papers (2021-04-01T09:59:40Z) - Towards Data Distillation for End-to-end Spoken Conversational Question
Answering [65.124088336738]
We propose a new Spoken Conversational Question Answering task (SCQA)
SCQA aims at enabling QA systems to model complex dialogues flow given the speech utterances and text corpora.
Our main objective is to build a QA system to deal with conversational questions both in spoken and text forms.
arXiv Detail & Related papers (2020-10-18T05:53:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.