Exploring Hint Generation Approaches in Open-Domain Question Answering
- URL: http://arxiv.org/abs/2409.16096v1
- Date: Tue, 24 Sep 2024 13:50:32 GMT
- Title: Exploring Hint Generation Approaches in Open-Domain Question Answering
- Authors: Jamshid Mozafari, Abdelrahman Abdallah, Bhawna Piryani, Adam Jatowt,
- Abstract summary: We introduce a novel context preparation approach called HINTQA.
Unlike traditional methods, HINTQA prompts LLMs to produce hints about potential answers for the question.
We demonstrate that hints enhance the accuracy of answers more than retrieved and generated contexts.
- Score: 16.434748534272014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic Question Answering (QA) systems rely on contextual information to provide accurate answers. Commonly, contexts are prepared through either retrieval-based or generation-based methods. The former involves retrieving relevant documents from a corpus like Wikipedia, whereas the latter uses generative models such as Large Language Models (LLMs) to generate the context. In this paper, we introduce a novel context preparation approach called HINTQA, which employs Automatic Hint Generation (HG) techniques. Unlike traditional methods, HINTQA prompts LLMs to produce hints about potential answers for the question rather than generating relevant context. We evaluate our approach across three QA datasets including TriviaQA, NaturalQuestions, and Web Questions, examining how the number and order of hints impact performance. Our findings show that the HINTQA surpasses both retrieval-based and generation-based approaches. We demonstrate that hints enhance the accuracy of answers more than retrieved and generated contexts.
Related papers
- Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation [65.16137964758612]
We explore the use of long-context capabilities in large language models to create synthetic reading comprehension data from entire books.
Our objective is to test the capabilities of LLMs to analyze, understand, and reason over problems that require a detailed comprehension of long spans of text.
arXiv Detail & Related papers (2024-05-31T20:15:10Z) - Boosting Conversational Question Answering with Fine-Grained Retrieval-Augmentation and Self-Check [25.63538452425097]
We propose a conversation-level RAG approach, which incorporates fine-grained retrieval augmentation and self-check for conversational question answering.
In particular, our approach consists of three components, namely conversational question refiner, fine-grained retriever and self-check based response generator.
arXiv Detail & Related papers (2024-03-27T04:20:18Z) - SPARQL Generation: an analysis on fine-tuning OpenLLaMA for Question
Answering over a Life Science Knowledge Graph [0.0]
We evaluate strategies for fine-tuning the OpenLlama LLM for question answering over life science knowledge graphs.
We propose an end-to-end data augmentation approach for extending a set of existing queries over a given knowledge graph.
We also investigate the role of semantic "clues" in the queries, such as meaningful variable names and inline comments.
arXiv Detail & Related papers (2024-02-07T07:24:01Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - Prompting Large Language Models with Chain-of-Thought for Few-Shot
Knowledge Base Question Generation [19.327008532572645]
Question Generation over Knowledge Bases (KBQG) aims to convert a logical form into a natural language question.
We propose Chain-of-Thought prompting, which is an in-context learning strategy for reasoning.
We conduct extensive experiments over three public KBQG datasets.
arXiv Detail & Related papers (2023-10-12T15:08:14Z) - An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
Question and answer generation (QAG) consists of generating a set of question-answer pairs given a context.
In this paper, we establish baselines with three different QAG methodologies that leverage sequence-to-sequence language model (LM) fine-tuning.
Experiments show that an end-to-end QAG model, which is computationally light at both training and inference times, is generally robust and outperforms other more convoluted approaches.
arXiv Detail & Related papers (2023-05-26T14:59:53Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
We present a novel perspective for solving knowledge-intensive tasks by replacing document retrievers with large language model generators.
We call our method generate-then-read (GenRead), which first prompts a large language model to generate contextutal documents based on a given question, and then reads the generated documents to produce the final answer.
arXiv Detail & Related papers (2022-09-21T01:30:59Z) - Tradeoffs in Sentence Selection Techniques for Open-Domain Question
Answering [54.541952928070344]
We describe two groups of models for sentence selection: QA-based approaches, which run a full-fledged QA system to identify answer candidates, and retrieval-based models, which find parts of each passage specifically related to each question.
We show that very lightweight QA models can do well at this task, but retrieval-based models are faster still.
arXiv Detail & Related papers (2020-09-18T23:39:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.