ClusterGNN: Cluster-based Coarse-to-Fine Graph Neural Network for
Efficient Feature Matching
- URL: http://arxiv.org/abs/2204.11700v1
- Date: Mon, 25 Apr 2022 14:43:15 GMT
- Title: ClusterGNN: Cluster-based Coarse-to-Fine Graph Neural Network for
Efficient Feature Matching
- Authors: Yan Shi, Jun-Xiong Cai, Yoli Shavit, Tai-Jiang Mu, Wensen Feng and Kai
Zhang
- Abstract summary: ClusterGNN is an attentional GNN architecture which operates on clusters for learning the feature matching task.
Our approach yields a 59.7% reduction in runtime and 58.4% reduction in memory consumption for dense detection.
- Score: 15.620335576962475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) with attention have been successfully applied
for learning visual feature matching. However, current methods learn with
complete graphs, resulting in a quadratic complexity in the number of features.
Motivated by a prior observation that self- and cross- attention matrices
converge to a sparse representation, we propose ClusterGNN, an attentional GNN
architecture which operates on clusters for learning the feature matching task.
Using a progressive clustering module we adaptively divide keypoints into
different subgraphs to reduce redundant connectivity, and employ a
coarse-to-fine paradigm for mitigating miss-classification within images. Our
approach yields a 59.7% reduction in runtime and 58.4% reduction in memory
consumption for dense detection, compared to current state-of-the-art GNN-based
matching, while achieving a competitive performance on various computer vision
tasks.
Related papers
- T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAE is a graph autoencoder framework that leverages transferability and stability of GNNs to achieve efficient network alignment without retraining.
Our experiments demonstrate that T-GAE outperforms the state-of-the-art optimization method and the best GNN approach by up to 38.7% and 50.8%, respectively.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - DeepCut: Unsupervised Segmentation using Graph Neural Networks
Clustering [6.447863458841379]
This study introduces a lightweight Graph Neural Network (GNN) to replace classical clustering methods.
Unlike existing methods, our GNN takes both the pair-wise affinities between local image features and the raw features as input.
We demonstrate how classical clustering objectives can be formulated as self-supervised loss functions for training an image segmentation GNN.
arXiv Detail & Related papers (2022-12-12T12:31:46Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - Attention-driven Graph Clustering Network [49.040136530379094]
We propose a novel deep clustering method named Attention-driven Graph Clustering Network (AGCN)
AGCN exploits a heterogeneous-wise fusion module to dynamically fuse the node attribute feature and the topological graph feature.
AGCN can jointly perform feature learning and cluster assignment in an unsupervised fashion.
arXiv Detail & Related papers (2021-08-12T02:30:38Z) - Learning Hierarchical Graph Neural Networks for Image Clustering [81.5841862489509]
We propose a hierarchical graph neural network (GNN) model that learns how to cluster a set of images into an unknown number of identities.
Our hierarchical GNN uses a novel approach to merge connected components predicted at each level of the hierarchy to form a new graph at the next level.
arXiv Detail & Related papers (2021-07-03T01:28:42Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision.
We present a novel cluster-aware graph neural network (CAGNN) model for unsupervised graph representation learning using self-supervised techniques.
arXiv Detail & Related papers (2020-09-03T13:57:18Z) - Graph Clustering with Graph Neural Networks [5.305362965553278]
Graph Neural Networks (GNNs) have achieved state-of-the-art results on many graph analysis tasks.
Unsupervised problems on graphs, such as graph clustering, have proved more resistant to advances in GNNs.
We introduce Deep Modularity Networks (DMoN), an unsupervised pooling method inspired by the modularity measure of clustering quality.
arXiv Detail & Related papers (2020-06-30T15:30:49Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
We propose a fully learnable clustering framework without requiring a large number of overlapped subgraphs.
Our method significantly improves clustering accuracy and thus performance of the recognition models trained on top, yet it is an order of magnitude more efficient than existing supervised methods.
arXiv Detail & Related papers (2020-04-01T13:39:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.