Demonstration of the Two-Fluxonium Cross-Resonance Gate
- URL: http://arxiv.org/abs/2204.11829v1
- Date: Mon, 25 Apr 2022 17:59:17 GMT
- Title: Demonstration of the Two-Fluxonium Cross-Resonance Gate
- Authors: Ebru Dogan, Dario Rosenstock, Lo\"ick Le Guevel, Haonan Xiong, Raymond
A. Mencia, Aaron Somoroff, Konstantin N. Nesterov, Maxim G. Vavilov, Vladimir
E. Manucharyan, and Chen Wang
- Abstract summary: Current implementations of two-qubit gates compromise fluxonium's coherence properties.
We realize a fast all-microwave cross-resonance gate between two capacitively-coupled fluxoniums.
Our results project a possible pathway towards reducing the two-qubit error rate below $10-4$ with present-day technologies.
- Score: 1.8568045743509223
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The superconducting fluxonium qubit has a great potential for high-fidelity
quantum gates with its long coherence times and strong anharmonicity at the
half flux quantum sweet spot. However, current implementations of two-qubit
gates compromise fluxonium's coherence properties by requiring either a
temporary population of the non-computational states or tuning the magnetic
flux off the sweet spot. Here we realize a fast all-microwave cross-resonance
gate between two capacitively-coupled fluxoniums with the qubit dynamics well
confined to the computational space. We demonstrate a direct CNOT gate in 70 ns
with fidelity up to $\mathcal{F}=0.9949(6)$ despite the limitations of a
sub-optimal measurement setup and device coherence. Our results project a
possible pathway towards reducing the two-qubit error rate below $10^{-4}$ with
present-day technologies.
Related papers
- Realization of two-qubit gates and multi-body entanglement states in an asymmetric superconducting circuits [3.9488862168263412]
We propose a tunable fluxonium-transmon-transmon (FTT) cou pling scheme.
The asymmetric structure composed of fluxonium and transmon will optimize the frequency space and form a high fidelity two-qubit quantum gate.
We study the performance of this scheme by simulating the general single-qubit Xpi/2 gate and two-qubit (iSWAP) gate.
arXiv Detail & Related papers (2024-04-12T08:44:21Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Fast Flux Entangling Gate for Fluxonium Circuits [0.0]
We analyze a high-fidelity two-qubit gate using fast flux pulses on superconducting fluxonium qubits.
The gate is realized by temporarily detuning magnetic flux through fluxonium loop away from the half flux quantum sweet spot.
arXiv Detail & Related papers (2021-10-01T19:46:18Z) - Long-range two-hybrid-qubit gates mediated by a microwave cavity with
red sidebands [0.0]
We show that off-resonant red-sideband-mediated two-qubit gates can exhibit fidelities $>$95% for realistic operating parameters.
In particular, we show that off-resonant red-sideband-mediated two-qubit gates can exhibit fidelities $>$99%.
arXiv Detail & Related papers (2021-06-19T19:00:26Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z) - Proposal for entangling gates on fluxonium qubits via a two-photon
transition [0.0]
We propose a family of microwave-activated entangling gates on two capacitively coupled fluxonium qubits.
A microwave pulse applied to either qubit induces two-photon Rabi oscillations with a negligible leakage outside the computational subspace.
Our gate scheme is promising for large-scale quantum processors.
arXiv Detail & Related papers (2020-11-19T18:17:42Z) - Scalable quantum computation with fast gates in two-dimensional
microtrap arrays of trapped ions [68.8204255655161]
We investigate the use of fast pulsed two-qubit gates for trapped ion quantum computing in a two-dimensional microtrap architecture.
We demonstrate that fast pulsed gates are capable of implementing high-fidelity entangling operations between ions in neighbouring traps faster than the trapping period.
arXiv Detail & Related papers (2020-05-01T13:18:22Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.