High fidelity two-qubit gates on fluxoniums using a tunable coupler
- URL: http://arxiv.org/abs/2203.16302v2
- Date: Thu, 31 Mar 2022 07:50:54 GMT
- Title: High fidelity two-qubit gates on fluxoniums using a tunable coupler
- Authors: Ilya N. Moskalenko, Ilya A. Simakov, Nikolay N. Abramov, Alexander A.
Grigorev, Dmitry O. Moskalev, Anastasiya A. Pishchimova, Nikita S. Smirnov,
Evgeniy V. Zikiy, Ilya A. Rodionov and Ilya S. Besedin
- Abstract summary: Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
- Score: 47.187609203210705
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Superconducting fluxonium qubits provide a promising alternative to transmons
on the path toward large-scale superconductor-based quantum computing due to
their better coherence and larger anharmonicity. A major challenge for
multi-qubit fluxonium devices is the experimental demonstration of a scalable
crosstalk-free multi-qubit architecture with high fidelity single-qubit and
two-qubit gates, single-shot readout and state initialization. Here, we present
a two-qubit fluxonium-based quantum processor with a tunable coupler element
following our theoretical proposal [DOI: 10.1063/5.0064800]. We experimentally
demonstrate fSim-type and controlled-Z gates with $99.55\%$ and $99.23\%$
fidelities, respectively. The residual ZZ interaction is suppressed down to the
few kHz level. Using a galvanically coupled flux control line, we implement
high fidelity single-qubit gates and ground state initialization with a single
arbitrary waveform generator channel per qubit.
Related papers
- Realization of two-qubit gates and multi-body entanglement states in an asymmetric superconducting circuits [3.9488862168263412]
We propose a tunable fluxonium-transmon-transmon (FTT) cou pling scheme.
The asymmetric structure composed of fluxonium and transmon will optimize the frequency space and form a high fidelity two-qubit quantum gate.
We study the performance of this scheme by simulating the general single-qubit Xpi/2 gate and two-qubit (iSWAP) gate.
arXiv Detail & Related papers (2024-04-12T08:44:21Z) - A high on-off ratio beamsplitter interaction for gates on bosonically
encoded qubits [40.96261204117952]
A qubit in a high quality superconducting microwave cavity offers the opportunity to perform the first layer of error correction in a single device.
We use a 3-wave mixing coupling element to engineer a programmable beamsplitter interaction between two bosonic modes separated by more than an octave in frequency.
We then introduce a new protocol to realize a hybrid controlled-SWAP operation in the regime $g_bsapproxchi$, in which a transmon provides the control bit for the SWAP of two bosonic modes.
arXiv Detail & Related papers (2022-12-22T18:07:29Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits [105.54048699217668]
amplitude damping time, $T_phi$, has long stood as the major factor limiting quantum fidelity in superconducting circuits.
We propose a scheme for overcoming the conventional $T_phi$ limit on fidelity by designing qubits in a way that amplitude damping errors can be detected and converted into erasure errors.
arXiv Detail & Related papers (2022-08-10T17:39:21Z) - Tunable coupling scheme for implementing two-qubit gates on fluxonium
qubits [0.0]
The superconducting fluxonium circuit is an RF-SQUID-type flux qubit that uses a large inductance built from an array of Josephson junctions or a high kinetic inductance material.
In contrast to the transmon qubit, the anharmonicity of fluxonium can be large and positive, allowing for better separation between the low energy qubit manifold of the circuit and higher-lying excited states.
We propose a tunable coupling scheme for implementing two-qubit gates on fixed-frequency fluxonium qubits, biased at half flux quantum.
arXiv Detail & Related papers (2021-07-24T07:21:01Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Arbitrary controlled-phase gate on fluxonium qubits using differential
ac-Stark shifts [1.8568045743509223]
We show a resource-efficient control over the interaction of strongly-anharmonic fluxonium qubits.
Our result demonstrates the advantages of strongly-anharmonic circuits over transmons in designing the next generation of quantum processors.
arXiv Detail & Related papers (2021-03-08T00:02:56Z) - Quantum computing with superconducting circuits in the picosecond regime [0.0]
We show that for highly anharmonic flux qubits and commercially available control electronics, single- and two-qubit operations can be implemented in about 100 picoseconds.
Compared to state-of-the-art implementations with transmon qubits, a hundredfold increase in the speed of gate operations with superconducting circuits is still feasible.
arXiv Detail & Related papers (2021-01-14T19:00:00Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.