Contrastive learning-based computational histopathology predict
differential expression of cancer driver genes
- URL: http://arxiv.org/abs/2204.11994v2
- Date: Wed, 27 Apr 2022 12:20:01 GMT
- Title: Contrastive learning-based computational histopathology predict
differential expression of cancer driver genes
- Authors: Haojie Huang, Gongming Zhou, Xuejun Liu, Lei Deng, Chen Wu, Dachuan
Zhang and Hui Liu
- Abstract summary: HistCode is a self-supervised contrastive learning framework to infer differential gene expressions from whole slide images.
Our experiments showed that our method outperformed other state-of-the-art models in tumor diagnosis tasks.
- Score: 13.167222116204226
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Digital pathological analysis is run as the main examination used for cancer
diagnosis. Recently, deep learning-driven feature extraction from pathology
images is able to detect genetic variations and tumor environment, but few
studies focus on differential gene expression in tumor cells. In this paper, we
propose a self-supervised contrastive learning framework, HistCode, to infer
differential gene expressions from whole slide images (WSIs). We leveraged
contrastive learning on large-scale unannotated WSIs to derive slide-level
histopathological feature in latent space, and then transfer it to tumor
diagnosis and prediction of differentially expressed cancer driver genes. Our
extensive experiments showed that our method outperformed other
state-of-the-art models in tumor diagnosis tasks, and also effectively
predicted differential gene expressions. Interestingly, we found the higher
fold-changed genes can be more precisely predicted. To intuitively illustrate
the ability to extract informative features from pathological images, we
spatially visualized the WSIs colored by the attentive scores of image tiles.
We found that the tumor and necrosis areas were highly consistent with the
annotations of experienced pathologists. Moreover, the spatial heatmap
generated by lymphocyte-specific gene expression patterns was also consistent
with the manually labeled WSI.
Related papers
- Multimodal contrastive learning for spatial gene expression prediction using histology images [13.47034080678041]
We propose textbfmclSTExp, a multimodal contrastive learning with Transformer and Densenet-121 encoder for Spatial Transcriptomics Expression prediction.
textbfmclSTExp has superior performance in predicting spatial gene expression.
It has shown promise in interpreting cancer-specific overexpressed genes, elucidating immune-related genes, and identifying specialized spatial domains annotated by pathologists.
arXiv Detail & Related papers (2024-07-11T06:33:38Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
Genome-wide association studies (GWAS) are used to identify relationships between genetic variations and specific traits.
Representation learning for imaging genetics is largely under-explored due to the unique challenges posed by GWAS.
We introduce a trans-modal learning framework Genetic InfoMax (GIM) to address the specific challenges of GWAS.
arXiv Detail & Related papers (2023-09-26T03:59:21Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
Cancer is the second major cause of death after cardiovascular diseases.
Gene expression can play a fundamental role in the early detection of cancer.
This study reviews recent progress in gene expression analysis for cancer classification using machine learning methods.
arXiv Detail & Related papers (2023-01-28T15:03:03Z) - Attention-based Interpretable Regression of Gene Expression in Histology [0.0]
Interpretability of deep learning is widely used to evaluate the reliability of medical imaging models.
We show that interpretability can reveal connections between the microscopic appearance of cancer tissue and its gene expression profiling.
arXiv Detail & Related papers (2022-08-29T07:30:33Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - All You Need is Color: Image based Spatial Gene Expression Prediction
using Neural Stain Learning [11.9045433112067]
We propose a "stain-aware" machine learning approach for prediction of spatial transcriptomic gene expression profiles.
We have found that the gene expression predictions from the proposed approach show higher correlations with true expression values obtained through sequencing.
arXiv Detail & Related papers (2021-08-23T23:43:38Z) - Pan-Cancer Integrative Histology-Genomic Analysis via Interpretable
Multimodal Deep Learning [4.764927152701701]
We integrate whole slide pathology images, RNA-seq abundance, copy number variation, and mutation data from 5,720 patients across 14 major cancer types.
Our interpretable, weakly-supervised, multimodal deep learning algorithm is able to fuse these heterogeneous modalities for predicting outcomes.
We analyze morphologic and molecular markers responsible for prognostic predictions across all cancer types.
arXiv Detail & Related papers (2021-08-04T20:40:05Z) - Adversarial learning of cancer tissue representations [6.395981404833557]
We present an adversarial learning model to extract feature representations of cancer tissue, without the need for manual annotations.
We show that these representations are able to identify a variety of morphological characteristics across three cancer types: Breast, colon, and lung.
Our results show that our model captures distinct phenotypic characteristics of real tissue samples, paving the way for further understanding of tumor progression and tumor micro-environment.
arXiv Detail & Related papers (2021-08-04T18:00:47Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
We explore the potential to capture information contained in cancer genomic information using a novel topology-based approach.
We find that this technique has the potential to extract meaningful low-dimensional representations in cancer somatic genetic data.
arXiv Detail & Related papers (2020-11-22T17:31:23Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Gleason Grading of Histology Prostate Images through Semantic
Segmentation via Residual U-Net [60.145440290349796]
The final diagnosis of prostate cancer is based on the visual detection of Gleason patterns in prostate biopsy by pathologists.
Computer-aided-diagnosis systems allow to delineate and classify the cancerous patterns in the tissue.
The methodological core of this work is a U-Net convolutional neural network for image segmentation modified with residual blocks able to segment cancerous tissue.
arXiv Detail & Related papers (2020-05-22T19:49:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.