Attention-based Interpretable Regression of Gene Expression in Histology
- URL: http://arxiv.org/abs/2208.13776v1
- Date: Mon, 29 Aug 2022 07:30:33 GMT
- Title: Attention-based Interpretable Regression of Gene Expression in Histology
- Authors: Mara Graziani and Niccol\`o Marini and Nicolas Deutschmann and Nikita
Janakarajan and Henning M\"uller and Mar\'ia Rodr\'iguez Mart\'inez
- Abstract summary: Interpretability of deep learning is widely used to evaluate the reliability of medical imaging models.
We show that interpretability can reveal connections between the microscopic appearance of cancer tissue and its gene expression profiling.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretability of deep learning is widely used to evaluate the reliability
of medical imaging models and reduce the risks of inaccurate patient
recommendations. For models exceeding human performance, e.g. predicting RNA
structure from microscopy images, interpretable modelling can be further used
to uncover highly non-trivial patterns which are otherwise imperceptible to the
human eye. We show that interpretability can reveal connections between the
microscopic appearance of cancer tissue and its gene expression profiling.
While exhaustive profiling of all genes from the histology images is still
challenging, we estimate the expression values of a well-known subset of genes
that is indicative of cancer molecular subtype, survival, and treatment
response in colorectal cancer. Our approach successfully identifies meaningful
information from the image slides, highlighting hotspots of high gene
expression. Our method can help characterise how gene expression shapes tissue
morphology and this may be beneficial for patient stratification in the
pathology unit. The code is available on GitHub.
Related papers
- VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNA is a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning.
By leveraging vector-quantized codebooks as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings.
arXiv Detail & Related papers (2024-05-13T20:15:03Z) - Pathology-genomic fusion via biologically informed cross-modality graph learning for survival analysis [7.996257103473235]
We propose Pathology-Genome Heterogeneous Graph (PGHG) that integrates whole slide images (WSI) and bulk RNA-Seq expression data with heterogeneous graph neural network for cancer survival analysis.
The PGHG consists of biological knowledge-guided representation learning network and pathology-genome heterogeneous graph.
We evaluate the model on low-grade gliomas, glioblastoma, and kidney renal papillary cell carcinoma datasets from the Cancer Genome Atlas.
arXiv Detail & Related papers (2024-04-11T09:07:40Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
Genome-wide association studies (GWAS) are used to identify relationships between genetic variations and specific traits.
Representation learning for imaging genetics is largely under-explored due to the unique challenges posed by GWAS.
We introduce a trans-modal learning framework Genetic InfoMax (GIM) to address the specific challenges of GWAS.
arXiv Detail & Related papers (2023-09-26T03:59:21Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
Cancer is the second major cause of death after cardiovascular diseases.
Gene expression can play a fundamental role in the early detection of cancer.
This study reviews recent progress in gene expression analysis for cancer classification using machine learning methods.
arXiv Detail & Related papers (2023-01-28T15:03:03Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - Deep Learning Generates Synthetic Cancer Histology for Explainability
and Education [37.13457398561086]
Conditional generative adversarial networks (cGANs) are AI models that generate synthetic images.
We describe the use of a cGAN for explaining models trained to classify molecularly-subtyped tumors.
We show that clear, intuitive cGAN visualizations can reinforce and improve human understanding of histologic manifestations of tumor biology.
arXiv Detail & Related papers (2022-11-12T00:14:57Z) - Contrastive learning-based computational histopathology predict
differential expression of cancer driver genes [13.167222116204226]
HistCode is a self-supervised contrastive learning framework to infer differential gene expressions from whole slide images.
Our experiments showed that our method outperformed other state-of-the-art models in tumor diagnosis tasks.
arXiv Detail & Related papers (2022-04-25T23:21:33Z) - All You Need is Color: Image based Spatial Gene Expression Prediction
using Neural Stain Learning [11.9045433112067]
We propose a "stain-aware" machine learning approach for prediction of spatial transcriptomic gene expression profiles.
We have found that the gene expression predictions from the proposed approach show higher correlations with true expression values obtained through sequencing.
arXiv Detail & Related papers (2021-08-23T23:43:38Z) - Pan-Cancer Integrative Histology-Genomic Analysis via Interpretable
Multimodal Deep Learning [4.764927152701701]
We integrate whole slide pathology images, RNA-seq abundance, copy number variation, and mutation data from 5,720 patients across 14 major cancer types.
Our interpretable, weakly-supervised, multimodal deep learning algorithm is able to fuse these heterogeneous modalities for predicting outcomes.
We analyze morphologic and molecular markers responsible for prognostic predictions across all cancer types.
arXiv Detail & Related papers (2021-08-04T20:40:05Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.